--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.1 model-index: - name: mistral_texmin results: [] --- # mistral_texmin This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6494 | 0.62 | 20 | 0.4569 | | 0.3477 | 1.25 | 40 | 0.1761 | | 0.1239 | 1.88 | 60 | 0.0429 | | 0.0443 | 2.5 | 80 | 0.0345 | | 0.034 | 3.12 | 100 | 0.0292 | ### Framework versions - PEFT 0.7.0 - Transformers 4.36.0 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0