File size: 7,078 Bytes
62e8b6f
 
 
 
 
 
 
a01146d
 
 
62e8b6f
 
 
a01146d
62e8b6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d34c453
 
 
 
 
 
 
62e8b6f
 
 
 
 
d34c453
 
 
 
7f94a35
62e8b6f
 
 
 
 
 
7f94a35
26a78de
b74b487
 
7f94a35
62e8b6f
 
 
7f94a35
b74b487
 
7f94a35
b74b487
62e8b6f
 
 
b74b487
 
7f94a35
b74b487
 
62e8b6f
 
 
 
7f94a35
b74b487
 
 
7f94a35
62e8b6f
 
f78a522
b74b487
 
 
7f94a35
 
62e8b6f
 
 
 
7f94a35
 
 
 
b74b487
62e8b6f
 
 
b74b487
 
7f94a35
 
 
62e8b6f
 
 
7f94a35
 
b74b487
 
7f94a35
62e8b6f
 
 
7f94a35
 
b74b487
7f94a35
b74b487
62e8b6f
 
 
 
b74b487
26a78de
7f94a35
 
 
62e8b6f
 
 
7f94a35
 
 
 
 
62e8b6f
 
 
7f94a35
26a78de
7f94a35
 
 
62e8b6f
 
 
7f94a35
 
26a78de
7f94a35
26a78de
62e8b6f
 
 
 
 
 
7f94a35
62e8b6f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
---
language:
- en
- es
- pt
tags:
- falcon3
license: other 
license_name: falcon-llm-license 
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
---



#  Table of Contents

0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Training Details](#training-details)
4. [Evaluation](#evaluation)


# TL;DR

# Model Details

⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.** 

## Model Description

- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
- **Model type:** Causal decoder-only
- **Architecture:** Transformer-base
- **Language(s) (NLP):** Mainly English
- **License:** TII Falcon-LLM License 2.0

<br>

# Usage

Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source):

## Using the Pytorch model with 🤗 transformers

### Running the model on a CPU

<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base")

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

### Running the model on a GPU

<details>
<summary> Click to expand </summary>

```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", device_map="auto")

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

### Running the model on a GPU using `torch.compile`

<details>
<summary> Click to expand </summary>

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", torch_dtype=torch.bfloat16).to(0)

model = torch.compile(model)

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>


# Training Details

## Training Data

Falcon3-7B is trained on 15 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data.

## Training Procedure

Falcon3-7B is trained on 256 H100 nodes (world size 2048).

### Training Hyperparameters

| **Hyperparameter** | **Value**  | **Comment**                           |
|--------------------|------------|---------------------------------------|
| Precision          | `bfloat16` |                                       |
| Optimizer          | AdamW      |                                       |
| Max learning rate  | 6e-4       | Following a WSD (warmup-stable-decay) |
|                    |            | learning rate scheduler               |
| Weight decay       | 1e-1       |                                       |
| z-loss             | 1e-4       |                                       |
| Batch size         | Variable   | Batch size was gradually increased    |
|                    |            | during the training                   |

# Evaluation
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
    <colgroup>
        <col style="width: 10%;">
        <col style="width: 10%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="width: 7%;">
        <col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
    </colgroup>
    <thead>
        <tr>
            <th>Category</th>
            <th>Benchmark</th>
            <th>Llama-3.2-1B</th>
            <th>Qwen2.5-1.5B</th>
            <th>SmolLM2-1.7B</th>
            <th>gemma-2-2b</th>
            <th>Falcon3-1B-Base</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td rowspan="3">General</td>
            <td>MMLU (5-shot)</td>
            <td>31.1</td>
            <td>61.0</td>
            <td>50.1</td>
            <td>53.0</td>
            <td>42.5</td>
        </tr>
        <tr>
            <td>MMLU-PRO (5-shot)</td>
            <td>11.7</td>
            <td>28.4</td>
            <td>21.3</td>
            <td>22.1</td>
            <td>16.1</td>
        </tr>
        <tr>
            <td>IFEval</td>
            <td>14.8</td>
            <td>26.0</td>
            <td>24.2</td>
            <td>20.3</td>
            <td>25.2</td>
        </tr>
        <tr>
            <td rowspan="2">Math</td>
            <td>GSM8K (5-shot)</td>
            <td>6.6</td>
            <td>62.2</td>
            <td>31.0</td>
            <td>25.5</td>
            <td>34.3</td>
        </tr>
        <tr>
            <td>MATH Lvl-5 (4-shot)</td>
            <td>0.2</td>
            <td>6.7</td>
            <td>1.4</td>
            <td>2.6</td>
            <td>2.2</td>
        </tr>
        <tr>
            <td rowspan="4">Reasoning</td>
            <td>Arc Challenge (25-shot)</td>
            <td>40.2</td>
            <td>54.8</td>
            <td>54.1</td>
            <td>53.7</td>
            <td>48.1</td>
        </tr>
        <tr>
            <td>GPQA (0-shot)</td>
            <td>24.2</td>
            <td>28.1</td>
            <td>28.9</td>
            <td>25.5</td>
            <td>28.1</td>
        </tr>
        <tr>
            <td>MUSR (0-shot)</td>
            <td>34.5</td>
            <td>35.5</td>
            <td>34.7</td>
            <td>42.7</td>
            <td>41.9</td>
        </tr>
        <tr>
            <td>BBH (3-shot)</td>
            <td>31.2</td>
            <td>41.1</td>
            <td>34.2</td>
            <td>36.8</td>
            <td>36.0</td>
        </tr>
        <tr>
            <td rowspan="4">CommonSense Understanding</td>
            <td>PIQA (0-shot)</td>
            <td>74.5</td>
            <td>76.0</td>
            <td>77.5</td>
            <td>79.2</td>
            <td>74.5</td>
        </tr>
        <tr>
            <td>SciQ (0-shot)</td>
            <td>88.5</td>
            <td>93.1</td>
            <td>90.8</td>
            <td>95.7</td>
            <td>91.1</td>
        </tr>
        <tr>
            <td>Winogrande (0-shot)</td>
            <td>60.4</td>
            <td>63.0</td>
            <td>66.1</td>
            <td>68.6</td>
            <td>61.2</td>
        </tr>
        <tr>
            <td>OpenbookQA (0-shot)</td>
            <td>37.4</td>
            <td>40.4</td>
            <td>44.0</td>
            <td>41.8</td>
            <td>41.0</td>
        </tr>
    </tbody>
</table>




# Citation