--- language: - en tags: - falcon3 - falcon3_mamba - falcon_mamba base_model: - tiiuae/Falcon3-Mamba-7B-Base license: other license_name: falcon-llm-license license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html pipeline_tag: text-generation library_name: transformers --- # Falcon3-Mamba-7B-Instruct **Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B. This repository contains the **Falcon3-Mamba-7B-Instruct**. It achieves, compared to similar SSM-based models of the same size, state of art results (at release's time) on reasoning, language understanding, instruction following, code and mathematics tasks. Falcon3-Mamba-7B-Instruct supports a context length up to 32K and was mainly trained on english corpus. ## Model Details - Architecture (same as [Falcon-Mamba-7b](https://huggingface.co/tiiuae/falcon-mamba-7b)) - Mamba1 based causal decoder only architecture trained on a causal language modeling task (i.e., predict the next token). - 64 decoder blocks - width: 4096 - state_size: 16 - 32k context length - 65k vocab size - Continue Pretrained from [Falcon Mamba 7B](https://huggingface.co/tiiuae/falcon-mamba-7b), with another 1500 Gigatokens of data comprising of web, code, STEM and high quality data. - Postrained on 1.2 million samples of STEM, conversations, code, and safety. - Developed by [Technology Innovation Institute](https://www.tii.ae) - License: TII Falcon-LLM License 2.0 - Model Release Date: December 2024 ## Getting started
Click to expand ```python from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "tiiuae/Falcon3-Mamba-7B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "How many hours in one day?" messages = [ {"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=1024 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ```

# Benchmarks We report in the following table our internal pipeline benchmarks. For the benchmarks marked by star, we normalize the results with HuggingFace score normalization:
Category Benchmark Zamba2-7B-instruct Jamba-1.5-Mini Llama-3.1-8B-Instruct Falcon3-Mamba-7B-Instruct
General MMLU (5-shot) - 68.7% 55.9% 65.3%
MMLU-PRO (5-shot)* 32.4% 31.6% 21.8% 26.3%
IFEval 69.9% 65.7% 78.8% 71.7%
Math GSM8K (5-shot) - 74.9% 19.2% 65.2%
MATH Lvl-5 (4-shot) - 6.9% 10.4% 27.3%
Reasoning Arc Challenge (25-shot) - 54.3% 46.6% 53.7%
GPQA (0-shot)* 10.3% 11.1% 33.6% 7.2%
MUSR (0-shot)* 8.2% 12.2% 38.6% 8.3%
BBH (3-shot)* 33.3% 35.3% 43.7% 25.2%
CommonSense Understanding PIQA (0-shot) - 82.3% 78.9% 80.9%
SciQ (0-shot) - 94.9% 80.2% 93.6%
Winogrande (0-shot) - 64.5% - -
OpenbookQA (0-shot) - 34.6% 46.2% 47.2%
## Useful links - View our [release blogpost](https://huggingface.co/blog/falcon3). - Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers. ## Citation If the Falcon3 family of models were helpful to your work, feel free to give us a cite. ``` @misc{Falcon3, title = {The Falcon 3 Family of Open Models}, author = {Falcon-LLM Team}, month = {December}, year = {2024} } ```