slippylolo commited on
Commit
591607b
·
1 Parent(s): 555b780

Update model card

Browse files
Files changed (1) hide show
  1. README.md +181 -14
README.md CHANGED
@@ -3,43 +3,210 @@ datasets:
3
  - tiiuae/falcon-refinedweb
4
  language:
5
  - en
 
6
  ---
7
 
8
- # Falcon-7B
9
 
10
- **Falcon-7B is a 7B parameters causal decoder-only model built by [TII](https://www.tii.ae) and trained on 1500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. It is made available under the [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-7b/blob/main/LICENSE.txt).**
11
 
12
- More details coming soon.
13
 
 
14
 
15
- # Model Card for Falcon-7B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
 
 
 
 
18
  ## Model Details
19
 
20
  ### Model Description
21
 
22
- - **Developed by:** [https://www.tii.ae](https://www.tii.ae)
23
- - **Model type:** Causal decoder-only
24
- - **Language(s) (NLP):** English
25
- - **License:** TII Falcon LLM License
26
 
27
  ### Model Source
28
 
29
- - **Paper:** coming soon
30
- - **Demo:** coming soon
31
 
32
  ## Uses
33
 
 
 
 
 
34
  ### Out-of-Scope Use
35
 
36
- Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful
37
 
38
  ## Bias, Risks, and Limitations
39
 
40
- Falcon-7B is trained on English and French data only, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
 
43
- ## Paper
 
44
 
45
- More details coming soon in the paper.
 
3
  - tiiuae/falcon-refinedweb
4
  language:
5
  - en
6
+ inference: false
7
  ---
8
 
9
+ # 🚀 Falcon-7B
10
 
11
+ **Falcon-7B is a 7B parameters causal decoder-only model built by [TII](https://www.tii.ae) and trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. It is made available under the [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-7b/blob/main/LICENSE.txt).**
12
 
13
+ *Paper coming soon 😊.*
14
 
15
+ ## Why use Falcon-7B?
16
 
17
+ * **It outperforms comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
18
+ * **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
19
+ * **It is made available under a license allowing commercial use**, see the details of the [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-7b/blob/main/LICENSE.txt) below.
20
+
21
+ ⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.** If you are looking for a version better suited to taking generic instructions in a chat format, we recommend taking a look at [Falcon-7B-Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct).
22
+
23
+ 🔥 **Looking for an even more powerful model?** [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b) is Falcon-7B's big brother!
24
+
25
+ ```python
26
+ from transformers import AutoTokenizer, AutoModelForCausalLM
27
+ import transformers
28
+ import torch
29
+
30
+ model = "tiiuae/falcon-7b"
31
+
32
+ tokenizer = AutoTokenizer.from_pretrained(model)
33
+ pipeline = transformers.pipeline(
34
+ "text-generation",
35
+ model=model,
36
+ tokenizer=tokenizer,
37
+ torch_dtype=torch.bfloat16,
38
+ trust_remote_code=True,
39
+ device_map="auto",
40
+ )
41
+ sequences = pipeline(
42
+ "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
43
+ max_length=200,
44
+ do_sample=True,
45
+ top_k=10,
46
+ num_return_sequences=1,
47
+ eos_token_id=tokenizer.eos_token_id,
48
+ )
49
+ for seq in sequences:
50
+ print(f"Result: {seq['generated_text']}")
51
+
52
+ ```
53
 
54
 
55
+
56
+ # Model Card for Falcon-7B
57
+
58
  ## Model Details
59
 
60
  ### Model Description
61
 
62
+ - **Developed by:** [https://www.tii.ae](https://www.tii.ae);
63
+ - **Model type:** Causal decoder-only;
64
+ - **Language(s) (NLP):** English and French;
65
+ - **License:** [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-7b/blob/main/LICENSE.txt).
66
 
67
  ### Model Source
68
 
69
+ - **Paper:** *coming soon*.
 
70
 
71
  ## Uses
72
 
73
+ ### Direct Use
74
+
75
+ Research on large language models; as a foundation for further specialization and finetuning for specific usecases (e.g., summarization, text generation, chatbot, etc.)
76
+
77
  ### Out-of-Scope Use
78
 
79
+ Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
80
 
81
  ## Bias, Risks, and Limitations
82
 
83
+ Falcon-7B is trained on English and French data only, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
84
+
85
+ ### Recommendations
86
+
87
+ We recommend users of Falcon-7B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use.
88
+
89
+ ## How to Get Started with the Model
90
+
91
+
92
+ ```python
93
+ from transformers import AutoTokenizer, AutoModelForCausalLM
94
+ import transformers
95
+ import torch
96
+
97
+ model = "tiiuae/falcon-7b"
98
+
99
+ tokenizer = AutoTokenizer.from_pretrained(model)
100
+ pipeline = transformers.pipeline(
101
+ "text-generation",
102
+ model=model,
103
+ tokenizer=tokenizer,
104
+ torch_dtype=torch.bfloat16,
105
+ trust_remote_code=True,
106
+ device_map="auto",
107
+ )
108
+ sequences = pipeline(
109
+ "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
110
+ max_length=200,
111
+ do_sample=True,
112
+ top_k=10,
113
+ num_return_sequences=1,
114
+ eos_token_id=tokenizer.eos_token_id,
115
+ )
116
+ for seq in sequences:
117
+ print(f"Result: {seq['generated_text']}")
118
+
119
+ ```
120
+
121
+ ## Training Details
122
+
123
+ ### Training Data
124
+
125
+ Falcon-RW-7B was trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality filtered and deduplicated web dataset which we enhanced with curated corpora. Significant components from our curated copora were inspired by The Pile ([Gao et al., 2020](https://arxiv.org/abs/2101.00027)).
126
+
127
+ | **Data source** | **Fraction** | **Tokens** | **Sources** |
128
+ |--------------------|--------------|------------|-----------------------------------|
129
+ | RefinedWeb-English | 79% | 1,185B | massive web crawl |
130
+ | Books | 7% | 110B | |
131
+ | Conversations | 6% | 85B | Reddit, StackOverflow, HackerNews |
132
+ | Code | 3% | 45B | |
133
+ | RefinedWeb-French | 3% | 45B | massive web crawl |
134
+ | Technical | 2% | 30B | arXiv, PubMed, UPSTO, etc. |
135
+
136
+
137
+ The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer.
138
+
139
+ ### Training Procedure
140
+
141
+ Falcon-7B was trained on 384 A100 40GB GPUs, using a 2D parallelism strategy (PP=2, DP=192) combined with ZeRO.
142
+
143
+ #### Training Hyperparameters
144
+
145
+ | **Hyperparameter** | **Value** | **Comment** |
146
+ |--------------------|------------|-------------------------------------------|
147
+ | Precision | `bfloat16` | |
148
+ | Optimizer | AdamW | |
149
+ | Learning rate | 6e-4 | 4B tokens warm-up, cosine decay to 1.2e-5 |
150
+ | Weight decay | 1e-1 | |
151
+ | Z-loss | 1e-4 | |
152
+ | Batch size | 2304 | 30B tokens ramp-up |
153
+
154
+
155
+ #### Speeds, Sizes, Times
156
+
157
+ Training happened in early March 2023 and took about two weeks.
158
+
159
+
160
+ ## Evaluation
161
+
162
+ *Paper coming soon.*
163
+
164
+ See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.
165
+
166
+
167
+ ## Technical Specifications
168
+
169
+ ### Model Architecture and Objective
170
+
171
+ Falcon-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
172
+
173
+ The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:
174
+
175
+ * **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
176
+ * **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135));
177
+ * **Decoder-block:** parallel attention/MLP with a single layer norm.
178
+
179
+ | **Hyperparameter** | **Value** | **Comment** |
180
+ |--------------------|-----------|----------------------------------------|
181
+ | Layers | 32 | |
182
+ | `d_model` | 4544 | Increased to compensate for multiquery |
183
+ | `head_dim` | 64 | Reduced to optimise for FlashAttention |
184
+ | Vocabulary | 65024 | |
185
+ | Sequence length | 2048 | |
186
+
187
+ ### Compute Infrastructure
188
+
189
+ #### Hardware
190
+
191
+ Falcon-7B was trained on AWS SageMaker, on 384 A100 40GB GPUs in P4d instances.
192
+
193
+ #### Software
194
+
195
+ Falcon-7B was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)
196
+
197
+
198
+ ## Citation
199
+
200
+ *Paper coming soon 😊.*
201
+
202
+ ## License
203
+
204
+ Falcon-7B is made available under the [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-7b/blob/main/LICENSE.txt). Broadly speaking,
205
+ * You can freely use our models for research and/or personal purpose;
206
+ * You are allowed to share and build derivatives of these models, but you are required to give attribution and to share-alike with the same license;
207
+ * For commercial use, you are exempt from royalties payment if the attributable revenues are inferior to $1M/year, otherwise you should enter in a commercial agreement with TII.
208
 
209
 
210
+ ## Contact
211
212