File size: 6,840 Bytes
1a8b638
 
 
 
 
a8e8ac7
dee458d
1a8b638
 
 
 
 
 
831952d
 
1a8b638
 
831952d
1a8b638
831952d
 
 
 
1a8b638
831952d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a8b638
831952d
 
104655c
 
831952d
 
 
1a8b638
 
 
 
 
831952d
 
 
 
1a8b638
 
 
831952d
1a8b638
 
 
 
 
cca0510
1a8b638
 
 
831952d
 
 
1a8b638
 
 
831952d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca0510
 
 
 
 
 
 
831952d
cca0510
 
831952d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca0510
 
 
 
 
 
 
 
 
 
831952d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a8b638
831952d
dee458d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
datasets:
- tiiuae/falcon-refinedweb
language:
- en
inference: false
license: tii-falcon-llm
---

# Falcon-RW-1B

**Falcon-RW-1B is a 1B parameters causal decoder-only model built by [TII](https://www.tii.ae) and trained on 350B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb). It is made available under the [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-rw-1b/blob/main/LICENSE.txt).**

*Paper coming soon ๐Ÿ˜Š.*

RefinedWeb is a high-quality web dataset built by leveraging stringent filtering and large-scale deduplication. Falcon-RW-1B, trained on RefinedWeb only, matches or outperforms comparable models trained on curated data.

โš ๏ธ This model is intended for use as a **research artifact**, to study the influence of training on web data alone. **If you are interested in state-of-the-art models, we recommend using Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b), both trained on >1,000 billion tokens.**

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-rw-1b"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)
sequences = pipeline(
   "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

```

๐Ÿ’ฅ **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**



# Model Card for Falcon-RW-1B

## Model Details

### Model Description

- **Developed by:** [https://www.tii.ae](https://www.tii.ae);
- **Model type:** Causal decoder-only;
- **Language(s) (NLP):** English;
- **License:** [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-rw-1b/blob/main/LICENSE.txt).

### Model Source

- **Paper:** *coming soon*.

## Uses

### Direct Use

Research on large language models, specifically the influence of adequately filtered and deduplicated web data on the properties of large language models (fairness, safety, limitations, capabilities, etc.).

### Out-of-Scope Use

Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful. 

Broadly speaking, we would recommend Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) for any use not directly related to research on web data pipelines.

## Bias, Risks, and Limitations

Falcon-RW-1B is trained on English data only, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.

### Recommendations

We recommend users of Falcon-RW-1B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use.

## How to Get Started with the Model


```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-rw-1b"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)
sequences = pipeline(
   "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

```

## Training Details

### Training Data

Falcon-RW-1B was trained on 350B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality filtered and deduplicated web dataset. The data was tokenized with the GPT-2 tokenizer.

### Training Procedure 

Falcon-RW-1B was trained on 32 A100 40GB GPUs, using only data parallelism with ZeRO.

#### Training Hyperparameters

Hyperparameters were adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)).

| **Hyperparameter** | **Value**  | **Comment**                               |
|--------------------|------------|-------------------------------------------|
| Precision          | `bfloat16` |                                           |
| Optimizer          | AdamW      |                                           |
| Learning rate      | 2e-4       | 500M tokens warm-up, cosine decay to 2e-5 |
| Weight decay       | 1e-1       |                                           |
| Batch size         | 512        | 4B tokens ramp-up                         |


#### Speeds, Sizes, Times

Training happened in early December 2022 and took about six days. 


## Evaluation

*Paper coming soon.*


## Technical Specifications 

### Model Architecture and Objective

Falcon-RW-1B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).

The architecture is adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), but uses ALiBi ([Ofir et al., 2021](https://arxiv.org/abs/2108.12409)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)).

| **Hyperparameter** | **Value** | **Comment**                            |
|--------------------|-----------|----------------------------------------|
| Layers             | 24        |                                        |
| `d_model`          | 2048      |                                        |
| `head_dim`         | 64        | Reduced to optimise for FlashAttention |
| Vocabulary         | 50304     |                                        |
| Sequence length    | 2048      |                                        |

### Compute Infrastructure

#### Hardware

Falcon-RW-1B was trained on AWS SageMaker, on 32 A100 40GB GPUs in P4d instances. 

#### Software

Falcon-RW-1B was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)


## Citation

*Paper coming soon ๐Ÿ˜Š.*


## Contact
[email protected]