File size: 2,747 Bytes
bf81a8d 6784cd3 bf81a8d 6784cd3 bf81a8d 6784cd3 bf81a8d 6784cd3 bf81a8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-finetuned-sst2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
config: sst2
split: train
args: sst2
metrics:
- type: accuracy
value: 0.9071100917431193
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-sst2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2842
- Accuracy: 0.9071
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.02 | 100 | 0.3316 | 0.8624 |
| No log | 0.05 | 200 | 0.3357 | 0.8612 |
| No log | 0.07 | 300 | 0.3996 | 0.8383 |
| No log | 0.1 | 400 | 0.3012 | 0.8716 |
| 0.3421 | 0.12 | 500 | 0.3227 | 0.8693 |
| 0.3421 | 0.14 | 600 | 0.3643 | 0.8727 |
| 0.3421 | 0.17 | 700 | 0.2734 | 0.8853 |
| 0.3421 | 0.19 | 800 | 0.3077 | 0.8945 |
| 0.3421 | 0.21 | 900 | 0.2709 | 0.9002 |
| 0.2705 | 0.24 | 1000 | 0.2737 | 0.8899 |
| 0.2705 | 0.26 | 1100 | 0.3079 | 0.8979 |
| 0.2705 | 0.29 | 1200 | 0.2713 | 0.8968 |
| 0.2705 | 0.31 | 1300 | 0.2505 | 0.8933 |
| 0.2705 | 0.33 | 1400 | 0.2932 | 0.8922 |
| 0.239 | 0.36 | 1500 | 0.2842 | 0.9071 |
| 0.239 | 0.38 | 1600 | 0.2509 | 0.9014 |
| 0.239 | 0.4 | 1700 | 0.2819 | 0.8853 |
| 0.239 | 0.43 | 1800 | 0.2515 | 0.8956 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
|