File size: 1,397 Bytes
fde6cf6
d3a6749
fde6cf6
 
 
 
d3a6749
 
 
fde6cf6
 
d3a6749
e46c241
d3a6749
 
 
 
e46c241
 
d3a6749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
base_model: EleutherAI/pythia-160m-deduped
language: en
library_name: mlsae
license: mit
tags:
- arxiv:2409.04185
- model_hub_mixin
- pytorch_model_hub_mixin
---

# Model Card for tim-lawson/mlsae-pythia-160m-deduped-x4-k32-tfm

A Multi-Layer Sparse Autoencoder (MLSAE) trained on the residual stream activation
vectors from [EleutherAI/pythia-160m-deduped](https://huggingface.co/EleutherAI/pythia-160m-deduped) with an
expansion factor of R = 4 and sparsity k = 32, over 1 billion
tokens from [monology/pile-uncopyrighted](https://huggingface.co/datasets/monology/pile-uncopyrighted).


This model is a PyTorch Lightning MLSAETransformer module, which includes the underlying
transformer.

  
### Model Sources

- **Repository:** <https://github.com/tim-lawson/mlsae>
- **Paper:** <https://arxiv.org/abs/2409.04185>
- **Weights & Biases:** <https://wandb.ai/timlawson-/mlsae>

## Citation

**BibTeX:**

```bibtex
@misc{lawson_residual_2024,
  title         = {Residual {{Stream Analysis}} with {{Multi-Layer SAEs}}},
  author        = {Lawson, Tim and Farnik, Lucy and Houghton, Conor and Aitchison, Laurence},
  year          = {2024},
  month         = oct,
  number        = {arXiv:2409.04185},
  eprint        = {2409.04185},
  primaryclass  = {cs},
  publisher     = {arXiv},
  doi           = {10.48550/arXiv.2409.04185},
  urldate       = {2024-10-08},
  archiveprefix = {arXiv}
}
```