timinar JLTastet commited on
Commit
0858efd
·
1 Parent(s): 9b0406b

Fill-in the table of fine-tuning hyperparameters (#2)

Browse files

- Fill-in the table of fine-tuning hyperparameters (1d34a113cc19630b8da65fe6bbc845b23c6cd857)


Co-authored-by: Jean-Loup Tastet <[email protected]>

Files changed (1) hide show
  1. README.md +22 -24
README.md CHANGED
@@ -8,41 +8,39 @@ language:
8
 
9
  Our submission to the `strict-small` track of the [BabyLM challenge](https://babylm.github.io/index.html).
10
 
11
- Baby Llama is a 58-million-parameter model, distilled from an ensemble consisting of LLaMA-360M and GPT2-705M, both trained on the `babylm_10M` dataset.
12
 
13
  See the associated paper (arXiv number **TBA**) for a detailed discussion of the training procedure and of the model performance.
14
 
15
- ### Hyperparameters for the tasks requiring fine-tuning
16
 
17
  When evaluating the model on the [tasks that require fine-tuning](https://github.com/babylm/evaluation-pipeline/tree/main#fine-tuning),
18
  we noticed that the [default hyperparameters](https://github.com/babylm/evaluation-pipeline/tree/main#hyperparameters)
19
  suggested by the BabyLM organizers lead to severe overfitting in a number of tasks.
20
  To avoid this issue, we have re-tuned those hyperparameters.
21
-
22
  The sets of hyperparameters selected for each task are listed in the table below.
23
- A star (*) indicates that the early-stopping criterion was triggered before the specified number of epochs was reached.
24
 
25
- | Task | Initial learning rate | Batch size | Maximum epochs | Patience | Evaluate every (steps) | Random seed |
26
  | ---- | ------------- | ---------- | -------- | -------- | ---------- | ---- |
27
- | CoLA | | | | | | |
28
- | SST-2 | | | | | | |
29
- | MRPC | | | | | | |
30
- | QQP | | | | | | |
31
- | MNLI | | | | | | |
32
- | MNLI-mm | | | | | | |
33
- | QNLI | | | | | | |
34
  | RTE | 5e-5 | 64 | 6 | 10 | 200 | 12 |
35
- | BoolQ | 3e-4 | 16 | 10* | 10 | 10 | 12 |
36
  | MultiRC | 1e-4 | 64 | 7 | 10 | 1000 | 42 |
37
  | WSC | 5e-7 | 1 | 10 | 1000 | 2000 | 12 |
38
- | CR (Control) | | | | | | |
39
- | LC (Control) | | | | | | |
40
- | MV (Control) | | | | | | |
41
- | RP (Control) | | | | | | |
42
- | SC (Control) | | | | | | |
43
- | CR\_LC | | | | | | |
44
- | CR\_RTP | | | | | | |
45
- | MV\_LC | | | | | | |
46
- | MV\_RTP | | | | | | |
47
- | SC\_LC | | | | | | |
48
- | SC\_RP | | | | | | |
 
8
 
9
  Our submission to the `strict-small` track of the [BabyLM challenge](https://babylm.github.io/index.html).
10
 
11
+ Baby Llama is a 58M-parameter model, distilled from an ensemble consisting of LLaMA-360M and GPT2-705M, both trained on the `babylm_10M` dataset.
12
 
13
  See the associated paper (arXiv number **TBA**) for a detailed discussion of the training procedure and of the model performance.
14
 
15
+ ### Hyperparameters for the tasks that require fine-tuning
16
 
17
  When evaluating the model on the [tasks that require fine-tuning](https://github.com/babylm/evaluation-pipeline/tree/main#fine-tuning),
18
  we noticed that the [default hyperparameters](https://github.com/babylm/evaluation-pipeline/tree/main#hyperparameters)
19
  suggested by the BabyLM organizers lead to severe overfitting in a number of tasks.
20
  To avoid this issue, we have re-tuned those hyperparameters.
 
21
  The sets of hyperparameters selected for each task are listed in the table below.
 
22
 
23
+ | Task | Maximum learning rate | Batch size | Maximum epochs | Patience | Evaluate every (steps) | Random seed |
24
  | ---- | ------------- | ---------- | -------- | -------- | ---------- | ---- |
25
+ | CoLA | 4e-5 | 64 | 3 | 10 | 20 | 12 |
26
+ | SST-2 | 5e-5 | 64 | 6 | 10 | 200 | 12 |
27
+ | MRPC | 3e-5 | 64 | 3 | 10 | 20 | 12 |
28
+ | QQP | 4e-5 | 64 | 10 | 10 | 1000 | 12 |
29
+ | MNLI | 5e-5 | 64 | 6 | 10 | 200 | 12 |
30
+ | MNLI-mm |5e-5 | 64 | 6 | 10 | 200 | 12 |
31
+ | QNLI | 5e-5 | 64 | 6 | 10 | 200 | 12 |
32
  | RTE | 5e-5 | 64 | 6 | 10 | 200 | 12 |
33
+ | BoolQ | 3e-4 | 16 | 10 | 10 | 10| 12 |
34
  | MultiRC | 1e-4 | 64 | 7 | 10 | 1000 | 42 |
35
  | WSC | 5e-7 | 1 | 10 | 1000 | 2000 | 12 |
36
+ | CR (Control) | 5e-5 | 64 | 10 | 10 | 100 | 12 |
37
+ | LC (Control) | 1e-3 | 64 | 1 | 2 | 10 | 12 |
38
+ | MV (Control) | 5e-5 | 64 | 6 | 10 | 200 | 12 |
39
+ | RP (Control) | 1e-3 | 64 | 1 | 10 | 10 | 12 |
40
+ | SC (Control) | 1e-3 | 64 | 2 | 10 | 10 | 12 |
41
+ | CR\_LC | 1e-3 | 64 | 2 | 10 | 10 | 12 |
42
+ | CR\_RTP | 5e-5 | 64 | 6 | 10 | 200 | 12 |
43
+ | MV\_LC | 5e-5 | 64 | 6 | 10 | 200 | 12 |
44
+ | MV\_RTP | 5e-5 | 64 | 6 | 10 | 200 | 12 |
45
+ | SC\_LC | 1e-3 | 64 | 2 | 10 | 10 | 12 |
46
+ | SC\_RP | 1e-3 | 64 | 2 | 10 | 10 | 12 |