timjwhite commited on
Commit
bda1cab
·
1 Parent(s): 52ed071

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -24
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: apache-2.0
3
- base_model: ntu-spml/distilhubert
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.83
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -30,10 +30,10 @@ should probably proofread and complete it, then remove this comment. -->
30
 
31
  # distilhubert-finetuned-gtzan
32
 
33
- This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.8934
36
- - Accuracy: 0.83
37
 
38
  ## Model description
39
 
@@ -53,38 +53,33 @@ More information needed
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 0.0001
56
- - train_batch_size: 8
57
- - eval_batch_size: 8
58
  - seed: 42
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
- - num_epochs: 15
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
- | 1.9361 | 1.0 | 113 | 1.7009 | 0.47 |
69
- | 1.2014 | 2.0 | 226 | 1.0356 | 0.68 |
70
- | 0.943 | 3.0 | 339 | 0.8529 | 0.76 |
71
- | 0.6362 | 4.0 | 452 | 0.9040 | 0.72 |
72
- | 0.4754 | 5.0 | 565 | 0.7102 | 0.79 |
73
- | 0.4526 | 6.0 | 678 | 0.6811 | 0.8 |
74
- | 0.2139 | 7.0 | 791 | 0.7872 | 0.83 |
75
- | 0.0133 | 8.0 | 904 | 0.8736 | 0.83 |
76
- | 0.0089 | 9.0 | 1017 | 0.8696 | 0.82 |
77
- | 0.0639 | 10.0 | 1130 | 0.9064 | 0.85 |
78
- | 0.0026 | 11.0 | 1243 | 0.9165 | 0.82 |
79
- | 0.1601 | 12.0 | 1356 | 0.8257 | 0.86 |
80
- | 0.0017 | 13.0 | 1469 | 0.8388 | 0.85 |
81
- | 0.0018 | 14.0 | 1582 | 0.8639 | 0.84 |
82
- | 0.0017 | 15.0 | 1695 | 0.8934 | 0.83 |
83
 
84
 
85
  ### Framework versions
86
 
87
- - Transformers 4.32.0.dev0
88
  - Pytorch 2.0.1+cu118
89
  - Datasets 2.14.3
90
  - Tokenizers 0.13.3
 
1
  ---
2
  license: apache-2.0
3
+ base_model: Sandiago21/distilhubert-finetuned-gtzan
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.85
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
30
 
31
  # distilhubert-finetuned-gtzan
32
 
33
+ This model is a fine-tuned version of [Sandiago21/distilhubert-finetuned-gtzan](https://huggingface.co/Sandiago21/distilhubert-finetuned-gtzan) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.9021
36
+ - Accuracy: 0.85
37
 
38
  ## Model description
39
 
 
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 0.0001
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
  - seed: 42
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 10
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 0.2617 | 1.0 | 57 | 0.8101 | 0.76 |
69
+ | 0.3005 | 2.0 | 114 | 0.8589 | 0.82 |
70
+ | 0.0123 | 3.0 | 171 | 1.0596 | 0.8 |
71
+ | 0.0141 | 4.0 | 228 | 1.0238 | 0.81 |
72
+ | 0.0047 | 5.0 | 285 | 0.8953 | 0.83 |
73
+ | 0.0889 | 6.0 | 342 | 0.8765 | 0.86 |
74
+ | 0.0482 | 7.0 | 399 | 1.1115 | 0.83 |
75
+ | 0.0013 | 8.0 | 456 | 1.0884 | 0.84 |
76
+ | 0.0009 | 9.0 | 513 | 1.0055 | 0.85 |
77
+ | 0.0008 | 10.0 | 570 | 0.9021 | 0.85 |
 
 
 
 
 
78
 
79
 
80
  ### Framework versions
81
 
82
+ - Transformers 4.31.0
83
  - Pytorch 2.0.1+cu118
84
  - Datasets 2.14.3
85
  - Tokenizers 0.13.3