timjwhite commited on
Commit
37685fc
1 Parent(s): 1515fc3

Upload folder using huggingface_hub

Browse files
.summary/0/events.out.tfevents.1690675777.bf83178a6ebb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e95ddbccddc16d82c341f18fc42b1c24320f59eab19110ef13f7ce223b06e3d5
3
+ size 167282
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 8.81 +/- 4.72
19
  name: mean_reward
20
  verified: false
21
  ---
@@ -38,19 +38,19 @@ python -m sample_factory.huggingface.load_from_hub -r timjwhite/rl_course_vizdoo
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
- python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
  ```
43
 
44
 
45
  You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
  See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
-
48
  ## Training with this model
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
- python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
-
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 12.76 +/- 7.35
19
  name: mean_reward
20
  verified: false
21
  ---
 
38
 
39
  To run the model after download, use the `enjoy` script corresponding to this environment:
40
  ```
41
+ python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
  ```
43
 
44
 
45
  You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
  See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
  ## Training with this model
49
 
50
  To continue training with this model, use the `train` script corresponding to this environment:
51
  ```
52
+ python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
  ```
54
 
55
  Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+
checkpoint_p0/best_000000967_3960832_reward_28.867.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11659dff19234de81d800c86c8b63318f5e75af862dd2493c77c349fe1c73546
3
+ size 34928614
checkpoint_p0/checkpoint_000000546_2236416.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0026cd1acca33ea14cd5674058dda3dac87528525f4393fc08cc6bb272878b20
3
+ size 34929028
checkpoint_p0/checkpoint_000000978_4005888.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b55658880256cf391f1394a9ebcbf94bc8e7db3340c6c7a6cc6dd9f60605e5db
3
  size 34929028
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27749042e16b54626884c00e90c6f52e18461710254d7e2b0837080ec1a7b9eb
3
  size 34929028
config.json CHANGED
@@ -15,7 +15,7 @@
15
  "worker_num_splits": 2,
16
  "policy_workers_per_policy": 1,
17
  "max_policy_lag": 1000,
18
- "num_workers": 8,
19
  "num_envs_per_worker": 4,
20
  "batch_size": 1024,
21
  "num_batches_per_epoch": 1,
@@ -46,6 +46,8 @@
46
  "learning_rate": 0.0001,
47
  "lr_schedule": "constant",
48
  "lr_schedule_kl_threshold": 0.008,
 
 
49
  "obs_subtract_mean": 0.0,
50
  "obs_scale": 255.0,
51
  "normalize_input": true,
@@ -128,14 +130,13 @@
128
  "wide_aspect_ratio": false,
129
  "eval_env_frameskip": 1,
130
  "fps": 35,
131
- "command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
132
  "cli_args": {
133
  "env": "doom_health_gathering_supreme",
134
- "num_workers": 8,
135
  "num_envs_per_worker": 4,
136
  "train_for_env_steps": 4000000
137
  },
138
  "git_hash": "unknown",
139
- "git_repo_name": "not a git repository",
140
- "train_script": ".usr.local.lib.python3.10.dist-packages.ipykernel_launcher"
141
  }
 
15
  "worker_num_splits": 2,
16
  "policy_workers_per_policy": 1,
17
  "max_policy_lag": 1000,
18
+ "num_workers": 16,
19
  "num_envs_per_worker": 4,
20
  "batch_size": 1024,
21
  "num_batches_per_epoch": 1,
 
46
  "learning_rate": 0.0001,
47
  "lr_schedule": "constant",
48
  "lr_schedule_kl_threshold": 0.008,
49
+ "lr_adaptive_min": 1e-06,
50
+ "lr_adaptive_max": 0.01,
51
  "obs_subtract_mean": 0.0,
52
  "obs_scale": 255.0,
53
  "normalize_input": true,
 
130
  "wide_aspect_ratio": false,
131
  "eval_env_frameskip": 1,
132
  "fps": 35,
133
+ "command_line": "--env=doom_health_gathering_supreme --num_workers=16 --num_envs_per_worker=4 --train_for_env_steps=4000000",
134
  "cli_args": {
135
  "env": "doom_health_gathering_supreme",
136
+ "num_workers": 16,
137
  "num_envs_per_worker": 4,
138
  "train_for_env_steps": 4000000
139
  },
140
  "git_hash": "unknown",
141
+ "git_repo_name": "not a git repository"
 
142
  }
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:26f5eb581dfa653bf1614338430fe9a53d031674d7aaf9f29ccc68f88baada04
3
- size 17077762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79027abbf16ef6c179f71c3a8b0a0d84c4c64fd4f1319e1737cea4c69c7db2ee
3
+ size 24498656
sf_log.txt ADDED
@@ -0,0 +1,870 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-07-30 00:09:42,981][03333] Saving configuration to /content/train_dir/default_experiment/config.json...
2
+ [2023-07-30 00:09:42,983][03333] Rollout worker 0 uses device cpu
3
+ [2023-07-30 00:09:42,984][03333] Rollout worker 1 uses device cpu
4
+ [2023-07-30 00:09:42,986][03333] Rollout worker 2 uses device cpu
5
+ [2023-07-30 00:09:42,987][03333] Rollout worker 3 uses device cpu
6
+ [2023-07-30 00:09:42,988][03333] Rollout worker 4 uses device cpu
7
+ [2023-07-30 00:09:42,990][03333] Rollout worker 5 uses device cpu
8
+ [2023-07-30 00:09:42,991][03333] Rollout worker 6 uses device cpu
9
+ [2023-07-30 00:09:42,992][03333] Rollout worker 7 uses device cpu
10
+ [2023-07-30 00:09:42,993][03333] Rollout worker 8 uses device cpu
11
+ [2023-07-30 00:09:42,994][03333] Rollout worker 9 uses device cpu
12
+ [2023-07-30 00:09:42,996][03333] Rollout worker 10 uses device cpu
13
+ [2023-07-30 00:09:42,997][03333] Rollout worker 11 uses device cpu
14
+ [2023-07-30 00:09:42,998][03333] Rollout worker 12 uses device cpu
15
+ [2023-07-30 00:09:42,999][03333] Rollout worker 13 uses device cpu
16
+ [2023-07-30 00:09:43,000][03333] Rollout worker 14 uses device cpu
17
+ [2023-07-30 00:09:43,001][03333] Rollout worker 15 uses device cpu
18
+ [2023-07-30 00:09:43,121][03333] Using GPUs [0] for process 0 (actually maps to GPUs [0])
19
+ [2023-07-30 00:09:43,122][03333] InferenceWorker_p0-w0: min num requests: 5
20
+ [2023-07-30 00:09:43,180][03333] Starting all processes...
21
+ [2023-07-30 00:09:43,182][03333] Starting process learner_proc0
22
+ [2023-07-30 00:09:43,229][03333] Starting all processes...
23
+ [2023-07-30 00:09:43,234][03333] Starting process inference_proc0-0
24
+ [2023-07-30 00:09:43,235][03333] Starting process rollout_proc0
25
+ [2023-07-30 00:09:43,236][03333] Starting process rollout_proc1
26
+ [2023-07-30 00:09:43,237][03333] Starting process rollout_proc2
27
+ [2023-07-30 00:09:43,238][03333] Starting process rollout_proc3
28
+ [2023-07-30 00:09:43,240][03333] Starting process rollout_proc4
29
+ [2023-07-30 00:09:43,241][03333] Starting process rollout_proc5
30
+ [2023-07-30 00:09:43,242][03333] Starting process rollout_proc6
31
+ [2023-07-30 00:09:43,248][03333] Starting process rollout_proc7
32
+ [2023-07-30 00:09:43,249][03333] Starting process rollout_proc8
33
+ [2023-07-30 00:09:43,253][03333] Starting process rollout_proc9
34
+ [2023-07-30 00:09:43,254][03333] Starting process rollout_proc10
35
+ [2023-07-30 00:09:43,254][03333] Starting process rollout_proc11
36
+ [2023-07-30 00:09:43,255][03333] Starting process rollout_proc12
37
+ [2023-07-30 00:09:43,267][03333] Starting process rollout_proc13
38
+ [2023-07-30 00:09:43,267][03333] Starting process rollout_proc14
39
+ [2023-07-30 00:09:43,297][03333] Starting process rollout_proc15
40
+ [2023-07-30 00:09:46,862][09298] Using GPUs [0] for process 0 (actually maps to GPUs [0])
41
+ [2023-07-30 00:09:46,862][09298] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
42
+ [2023-07-30 00:09:46,878][09298] Num visible devices: 1
43
+ [2023-07-30 00:09:46,946][09298] Starting seed is not provided
44
+ [2023-07-30 00:09:46,946][09298] Using GPUs [0] for process 0 (actually maps to GPUs [0])
45
+ [2023-07-30 00:09:46,946][09298] Initializing actor-critic model on device cuda:0
46
+ [2023-07-30 00:09:46,947][09298] RunningMeanStd input shape: (3, 72, 128)
47
+ [2023-07-30 00:09:46,949][09298] RunningMeanStd input shape: (1,)
48
+ [2023-07-30 00:09:46,991][09298] ConvEncoder: input_channels=3
49
+ [2023-07-30 00:09:47,339][09324] Worker 6 uses CPU cores [6]
50
+ [2023-07-30 00:09:47,546][09298] Conv encoder output size: 512
51
+ [2023-07-30 00:09:47,546][09298] Policy head output size: 512
52
+ [2023-07-30 00:09:47,628][09298] Created Actor Critic model with architecture:
53
+ [2023-07-30 00:09:47,628][09298] ActorCriticSharedWeights(
54
+ (obs_normalizer): ObservationNormalizer(
55
+ (running_mean_std): RunningMeanStdDictInPlace(
56
+ (running_mean_std): ModuleDict(
57
+ (obs): RunningMeanStdInPlace()
58
+ )
59
+ )
60
+ )
61
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
62
+ (encoder): VizdoomEncoder(
63
+ (basic_encoder): ConvEncoder(
64
+ (enc): RecursiveScriptModule(
65
+ original_name=ConvEncoderImpl
66
+ (conv_head): RecursiveScriptModule(
67
+ original_name=Sequential
68
+ (0): RecursiveScriptModule(original_name=Conv2d)
69
+ (1): RecursiveScriptModule(original_name=ELU)
70
+ (2): RecursiveScriptModule(original_name=Conv2d)
71
+ (3): RecursiveScriptModule(original_name=ELU)
72
+ (4): RecursiveScriptModule(original_name=Conv2d)
73
+ (5): RecursiveScriptModule(original_name=ELU)
74
+ )
75
+ (mlp_layers): RecursiveScriptModule(
76
+ original_name=Sequential
77
+ (0): RecursiveScriptModule(original_name=Linear)
78
+ (1): RecursiveScriptModule(original_name=ELU)
79
+ )
80
+ )
81
+ )
82
+ )
83
+ (core): ModelCoreRNN(
84
+ (core): GRU(512, 512)
85
+ )
86
+ (decoder): MlpDecoder(
87
+ (mlp): Identity()
88
+ )
89
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
90
+ (action_parameterization): ActionParameterizationDefault(
91
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
92
+ )
93
+ )
94
+ [2023-07-30 00:09:47,806][09328] Worker 9 uses CPU cores [9]
95
+ [2023-07-30 00:09:47,809][09327] Worker 8 uses CPU cores [8]
96
+ [2023-07-30 00:09:47,935][09342] Worker 11 uses CPU cores [11]
97
+ [2023-07-30 00:09:47,992][09318] Using GPUs [0] for process 0 (actually maps to GPUs [0])
98
+ [2023-07-30 00:09:47,992][09318] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
99
+ [2023-07-30 00:09:48,014][09322] Worker 4 uses CPU cores [4]
100
+ [2023-07-30 00:09:48,018][09318] Num visible devices: 1
101
+ [2023-07-30 00:09:48,036][09320] Worker 0 uses CPU cores [0]
102
+ [2023-07-30 00:09:48,056][09321] Worker 3 uses CPU cores [3]
103
+ [2023-07-30 00:09:48,154][09326] Worker 7 uses CPU cores [7]
104
+ [2023-07-30 00:09:48,156][09323] Worker 5 uses CPU cores [5]
105
+ [2023-07-30 00:09:48,158][09348] Worker 15 uses CPU cores [9, 10, 11]
106
+ [2023-07-30 00:09:48,158][09325] Worker 2 uses CPU cores [2]
107
+ [2023-07-30 00:09:48,296][09341] Worker 10 uses CPU cores [10]
108
+ [2023-07-30 00:09:48,395][09340] Worker 13 uses CPU cores [3, 4, 5]
109
+ [2023-07-30 00:09:48,456][09349] Worker 14 uses CPU cores [6, 7, 8]
110
+ [2023-07-30 00:09:48,493][09319] Worker 1 uses CPU cores [1]
111
+ [2023-07-30 00:09:48,543][09343] Worker 12 uses CPU cores [0, 1, 2]
112
+ [2023-07-30 00:09:55,974][09298] Using optimizer <class 'torch.optim.adam.Adam'>
113
+ [2023-07-30 00:09:55,975][09298] No checkpoints found
114
+ [2023-07-30 00:09:55,975][09298] Did not load from checkpoint, starting from scratch!
115
+ [2023-07-30 00:09:55,975][09298] Initialized policy 0 weights for model version 0
116
+ [2023-07-30 00:09:55,978][09298] LearnerWorker_p0 finished initialization!
117
+ [2023-07-30 00:09:55,978][09298] Using GPUs [0] for process 0 (actually maps to GPUs [0])
118
+ [2023-07-30 00:09:56,049][09318] RunningMeanStd input shape: (3, 72, 128)
119
+ [2023-07-30 00:09:56,050][09318] RunningMeanStd input shape: (1,)
120
+ [2023-07-30 00:09:56,062][09318] ConvEncoder: input_channels=3
121
+ [2023-07-30 00:09:56,168][09318] Conv encoder output size: 512
122
+ [2023-07-30 00:09:56,168][09318] Policy head output size: 512
123
+ [2023-07-30 00:09:56,257][03333] Inference worker 0-0 is ready!
124
+ [2023-07-30 00:09:56,259][03333] All inference workers are ready! Signal rollout workers to start!
125
+ [2023-07-30 00:09:56,316][09322] Doom resolution: 160x120, resize resolution: (128, 72)
126
+ [2023-07-30 00:09:56,316][09328] Doom resolution: 160x120, resize resolution: (128, 72)
127
+ [2023-07-30 00:09:56,317][09327] Doom resolution: 160x120, resize resolution: (128, 72)
128
+ [2023-07-30 00:09:56,317][09324] Doom resolution: 160x120, resize resolution: (128, 72)
129
+ [2023-07-30 00:09:56,317][09319] Doom resolution: 160x120, resize resolution: (128, 72)
130
+ [2023-07-30 00:09:56,318][09325] Doom resolution: 160x120, resize resolution: (128, 72)
131
+ [2023-07-30 00:09:56,319][09323] Doom resolution: 160x120, resize resolution: (128, 72)
132
+ [2023-07-30 00:09:56,320][09342] Doom resolution: 160x120, resize resolution: (128, 72)
133
+ [2023-07-30 00:09:56,367][09349] Doom resolution: 160x120, resize resolution: (128, 72)
134
+ [2023-07-30 00:09:56,367][09340] Doom resolution: 160x120, resize resolution: (128, 72)
135
+ [2023-07-30 00:09:56,368][09348] Doom resolution: 160x120, resize resolution: (128, 72)
136
+ [2023-07-30 00:09:56,369][09343] Doom resolution: 160x120, resize resolution: (128, 72)
137
+ [2023-07-30 00:09:56,370][09326] Doom resolution: 160x120, resize resolution: (128, 72)
138
+ [2023-07-30 00:09:56,370][09321] Doom resolution: 160x120, resize resolution: (128, 72)
139
+ [2023-07-30 00:09:56,370][09320] Doom resolution: 160x120, resize resolution: (128, 72)
140
+ [2023-07-30 00:09:56,371][09341] Doom resolution: 160x120, resize resolution: (128, 72)
141
+ [2023-07-30 00:09:56,440][09324] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
142
+ [2023-07-30 00:09:56,442][09324] EvtLoop [rollout_proc6_evt_loop, process=rollout_proc6] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
143
+ Traceback (most recent call last):
144
+ File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
145
+ self.game.init()
146
+ vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
147
+
148
+ During handling of the above exception, another exception occurred:
149
+
150
+ Traceback (most recent call last):
151
+ File "/usr/local/lib/python3.10/dist-packages/signal_slot/signal_slot.py", line 355, in _process_signal
152
+ slot_callable(*args)
153
+ File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
154
+ env_runner.init(self.timing)
155
+ File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
156
+ self._reset()
157
+ File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
158
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
159
+ File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 453, in reset
160
+ return self.env.reset(seed=seed, options=options)
161
+ File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
162
+ obs, info = self.env.reset(**kwargs)
163
+ File "/usr/local/lib/python3.10/dist-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
164
+ obs, info = self.env.reset(**kwargs)
165
+ File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
166
+ return self.env.reset(**kwargs)
167
+ File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 501, in reset
168
+ obs, info = self.env.reset(seed=seed, options=options)
169
+ File "/usr/local/lib/python3.10/dist-packages/sample_factory/envs/env_wrappers.py", line 82, in reset
170
+ obs, info = self.env.reset(**kwargs)
171
+ File "/usr/local/lib/python3.10/dist-packages/gymnasium/core.py", line 453, in reset
172
+ return self.env.reset(seed=seed, options=options)
173
+ File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
174
+ return self.env.reset(**kwargs)
175
+ File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
176
+ self._ensure_initialized()
177
+ File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
178
+ self.initialize()
179
+ File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
180
+ self._game_init()
181
+ File "/usr/local/lib/python3.10/dist-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
182
+ raise EnvCriticalError()
183
+ sample_factory.envs.env_utils.EnvCriticalError
184
+ [2023-07-30 00:09:56,445][09324] Unhandled exception in evt loop rollout_proc6_evt_loop
185
+ [2023-07-30 00:09:56,698][09319] Decorrelating experience for 0 frames...
186
+ [2023-07-30 00:09:56,698][09322] Decorrelating experience for 0 frames...
187
+ [2023-07-30 00:09:56,698][09325] Decorrelating experience for 0 frames...
188
+ [2023-07-30 00:09:56,790][09320] Decorrelating experience for 0 frames...
189
+ [2023-07-30 00:09:56,795][09342] Decorrelating experience for 0 frames...
190
+ [2023-07-30 00:09:56,807][09323] Decorrelating experience for 0 frames...
191
+ [2023-07-30 00:09:56,831][09321] Decorrelating experience for 0 frames...
192
+ [2023-07-30 00:09:56,840][09348] Decorrelating experience for 0 frames...
193
+ [2023-07-30 00:09:56,995][09328] Decorrelating experience for 0 frames...
194
+ [2023-07-30 00:09:57,000][09319] Decorrelating experience for 32 frames...
195
+ [2023-07-30 00:09:57,052][09340] Decorrelating experience for 0 frames...
196
+ [2023-07-30 00:09:57,070][09343] Decorrelating experience for 0 frames...
197
+ [2023-07-30 00:09:57,106][09327] Decorrelating experience for 0 frames...
198
+ [2023-07-30 00:09:57,177][09342] Decorrelating experience for 32 frames...
199
+ [2023-07-30 00:09:57,227][09326] Decorrelating experience for 0 frames...
200
+ [2023-07-30 00:09:57,318][09343] Decorrelating experience for 32 frames...
201
+ [2023-07-30 00:09:57,388][09341] Decorrelating experience for 0 frames...
202
+ [2023-07-30 00:09:57,396][09322] Decorrelating experience for 32 frames...
203
+ [2023-07-30 00:09:57,397][09323] Decorrelating experience for 32 frames...
204
+ [2023-07-30 00:09:57,408][09319] Decorrelating experience for 64 frames...
205
+ [2023-07-30 00:09:57,508][09340] Decorrelating experience for 32 frames...
206
+ [2023-07-30 00:09:57,652][09320] Decorrelating experience for 32 frames...
207
+ [2023-07-30 00:09:57,663][09348] Decorrelating experience for 32 frames...
208
+ [2023-07-30 00:09:57,700][09349] Decorrelating experience for 0 frames...
209
+ [2023-07-30 00:09:57,763][09326] Decorrelating experience for 32 frames...
210
+ [2023-07-30 00:09:57,763][09341] Decorrelating experience for 32 frames...
211
+ [2023-07-30 00:09:57,765][09323] Decorrelating experience for 64 frames...
212
+ [2023-07-30 00:09:57,916][03333] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
213
+ [2023-07-30 00:09:57,937][09319] Decorrelating experience for 96 frames...
214
+ [2023-07-30 00:09:57,944][09349] Decorrelating experience for 32 frames...
215
+ [2023-07-30 00:09:58,021][09327] Decorrelating experience for 32 frames...
216
+ [2023-07-30 00:09:58,069][09322] Decorrelating experience for 64 frames...
217
+ [2023-07-30 00:09:58,098][09342] Decorrelating experience for 64 frames...
218
+ [2023-07-30 00:09:58,195][09326] Decorrelating experience for 64 frames...
219
+ [2023-07-30 00:09:58,199][09323] Decorrelating experience for 96 frames...
220
+ [2023-07-30 00:09:58,277][09341] Decorrelating experience for 64 frames...
221
+ [2023-07-30 00:09:58,298][09343] Decorrelating experience for 64 frames...
222
+ [2023-07-30 00:09:58,333][09348] Decorrelating experience for 64 frames...
223
+ [2023-07-30 00:09:58,478][09349] Decorrelating experience for 64 frames...
224
+ [2023-07-30 00:09:58,496][09328] Decorrelating experience for 32 frames...
225
+ [2023-07-30 00:09:58,505][09340] Decorrelating experience for 64 frames...
226
+ [2023-07-30 00:09:58,543][09320] Decorrelating experience for 64 frames...
227
+ [2023-07-30 00:09:58,580][09327] Decorrelating experience for 64 frames...
228
+ [2023-07-30 00:09:58,619][09322] Decorrelating experience for 96 frames...
229
+ [2023-07-30 00:09:58,683][09348] Decorrelating experience for 96 frames...
230
+ [2023-07-30 00:09:58,717][09325] Decorrelating experience for 32 frames...
231
+ [2023-07-30 00:09:58,727][09341] Decorrelating experience for 96 frames...
232
+ [2023-07-30 00:09:58,864][09343] Decorrelating experience for 96 frames...
233
+ [2023-07-30 00:09:58,889][09321] Decorrelating experience for 32 frames...
234
+ [2023-07-30 00:09:58,901][09326] Decorrelating experience for 96 frames...
235
+ [2023-07-30 00:09:58,989][09340] Decorrelating experience for 96 frames...
236
+ [2023-07-30 00:09:59,013][09327] Decorrelating experience for 96 frames...
237
+ [2023-07-30 00:09:59,126][09328] Decorrelating experience for 64 frames...
238
+ [2023-07-30 00:09:59,223][09342] Decorrelating experience for 96 frames...
239
+ [2023-07-30 00:09:59,231][09325] Decorrelating experience for 64 frames...
240
+ [2023-07-30 00:09:59,410][09349] Decorrelating experience for 96 frames...
241
+ [2023-07-30 00:09:59,413][09321] Decorrelating experience for 64 frames...
242
+ [2023-07-30 00:09:59,507][09320] Decorrelating experience for 96 frames...
243
+ [2023-07-30 00:09:59,573][09328] Decorrelating experience for 96 frames...
244
+ [2023-07-30 00:09:59,597][09325] Decorrelating experience for 96 frames...
245
+ [2023-07-30 00:09:59,861][09321] Decorrelating experience for 96 frames...
246
+ [2023-07-30 00:10:00,503][09298] Signal inference workers to stop experience collection...
247
+ [2023-07-30 00:10:00,510][09318] InferenceWorker_p0-w0: stopping experience collection
248
+ [2023-07-30 00:10:02,916][03333] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 1032.4. Samples: 5162. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
249
+ [2023-07-30 00:10:02,917][03333] Avg episode reward: [(0, '2.490')]
250
+ [2023-07-30 00:10:03,114][03333] Heartbeat connected on Batcher_0
251
+ [2023-07-30 00:10:03,121][03333] Heartbeat connected on InferenceWorker_p0-w0
252
+ [2023-07-30 00:10:03,128][03333] Heartbeat connected on RolloutWorker_w0
253
+ [2023-07-30 00:10:03,131][03333] Heartbeat connected on RolloutWorker_w1
254
+ [2023-07-30 00:10:03,136][03333] Heartbeat connected on RolloutWorker_w2
255
+ [2023-07-30 00:10:03,139][03333] Heartbeat connected on RolloutWorker_w3
256
+ [2023-07-30 00:10:03,142][03333] Heartbeat connected on RolloutWorker_w4
257
+ [2023-07-30 00:10:03,146][03333] Heartbeat connected on RolloutWorker_w5
258
+ [2023-07-30 00:10:03,152][03333] Heartbeat connected on RolloutWorker_w7
259
+ [2023-07-30 00:10:03,156][03333] Heartbeat connected on RolloutWorker_w8
260
+ [2023-07-30 00:10:03,159][03333] Heartbeat connected on RolloutWorker_w9
261
+ [2023-07-30 00:10:03,162][03333] Heartbeat connected on RolloutWorker_w10
262
+ [2023-07-30 00:10:03,165][03333] Heartbeat connected on RolloutWorker_w11
263
+ [2023-07-30 00:10:03,169][03333] Heartbeat connected on RolloutWorker_w12
264
+ [2023-07-30 00:10:03,172][03333] Heartbeat connected on RolloutWorker_w13
265
+ [2023-07-30 00:10:03,176][03333] Heartbeat connected on RolloutWorker_w14
266
+ [2023-07-30 00:10:03,179][03333] Heartbeat connected on RolloutWorker_w15
267
+ [2023-07-30 00:10:04,786][09298] Signal inference workers to resume experience collection...
268
+ [2023-07-30 00:10:04,787][09318] InferenceWorker_p0-w0: resuming experience collection
269
+ [2023-07-30 00:10:05,673][03333] Heartbeat connected on LearnerWorker_p0
270
+ [2023-07-30 00:10:07,142][09318] Updated weights for policy 0, policy_version 10 (0.0011)
271
+ [2023-07-30 00:10:07,916][03333] Fps is (10 sec: 5324.8, 60 sec: 5324.8, 300 sec: 5324.8). Total num frames: 53248. Throughput: 0: 523.8. Samples: 5238. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
272
+ [2023-07-30 00:10:07,918][03333] Avg episode reward: [(0, '4.400')]
273
+ [2023-07-30 00:10:09,036][09318] Updated weights for policy 0, policy_version 20 (0.0013)
274
+ [2023-07-30 00:10:10,841][09318] Updated weights for policy 0, policy_version 30 (0.0013)
275
+ [2023-07-30 00:10:12,528][09318] Updated weights for policy 0, policy_version 40 (0.0013)
276
+ [2023-07-30 00:10:12,916][03333] Fps is (10 sec: 17202.7, 60 sec: 11468.7, 300 sec: 11468.7). Total num frames: 172032. Throughput: 0: 2314.9. Samples: 34724. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
277
+ [2023-07-30 00:10:12,919][03333] Avg episode reward: [(0, '4.316')]
278
+ [2023-07-30 00:10:12,922][09298] Saving new best policy, reward=4.316!
279
+ [2023-07-30 00:10:14,277][09318] Updated weights for policy 0, policy_version 50 (0.0015)
280
+ [2023-07-30 00:10:15,871][09318] Updated weights for policy 0, policy_version 60 (0.0012)
281
+ [2023-07-30 00:10:17,575][09318] Updated weights for policy 0, policy_version 70 (0.0013)
282
+ [2023-07-30 00:10:17,916][03333] Fps is (10 sec: 24166.4, 60 sec: 14745.7, 300 sec: 14745.7). Total num frames: 294912. Throughput: 0: 3555.7. Samples: 71114. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
283
+ [2023-07-30 00:10:17,918][03333] Avg episode reward: [(0, '4.485')]
284
+ [2023-07-30 00:10:17,926][09298] Saving new best policy, reward=4.485!
285
+ [2023-07-30 00:10:19,186][09318] Updated weights for policy 0, policy_version 80 (0.0013)
286
+ [2023-07-30 00:10:20,861][09318] Updated weights for policy 0, policy_version 90 (0.0012)
287
+ [2023-07-30 00:10:22,459][09318] Updated weights for policy 0, policy_version 100 (0.0013)
288
+ [2023-07-30 00:10:22,916][03333] Fps is (10 sec: 24986.1, 60 sec: 16875.6, 300 sec: 16875.6). Total num frames: 421888. Throughput: 0: 3598.6. Samples: 89964. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0)
289
+ [2023-07-30 00:10:22,919][03333] Avg episode reward: [(0, '4.432')]
290
+ [2023-07-30 00:10:24,027][09318] Updated weights for policy 0, policy_version 110 (0.0013)
291
+ [2023-07-30 00:10:25,904][09318] Updated weights for policy 0, policy_version 120 (0.0012)
292
+ [2023-07-30 00:10:27,683][09318] Updated weights for policy 0, policy_version 130 (0.0012)
293
+ [2023-07-30 00:10:27,916][03333] Fps is (10 sec: 24166.2, 60 sec: 17885.9, 300 sec: 17885.9). Total num frames: 536576. Throughput: 0: 4203.4. Samples: 126102. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
294
+ [2023-07-30 00:10:27,918][03333] Avg episode reward: [(0, '5.123')]
295
+ [2023-07-30 00:10:27,926][09298] Saving new best policy, reward=5.123!
296
+ [2023-07-30 00:10:29,465][09318] Updated weights for policy 0, policy_version 140 (0.0013)
297
+ [2023-07-30 00:10:31,238][09318] Updated weights for policy 0, policy_version 150 (0.0012)
298
+ [2023-07-30 00:10:32,917][09318] Updated weights for policy 0, policy_version 160 (0.0012)
299
+ [2023-07-30 00:10:32,916][03333] Fps is (10 sec: 23347.3, 60 sec: 18724.6, 300 sec: 18724.6). Total num frames: 655360. Throughput: 0: 4601.3. Samples: 161044. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0)
300
+ [2023-07-30 00:10:32,918][03333] Avg episode reward: [(0, '4.944')]
301
+ [2023-07-30 00:10:34,643][09318] Updated weights for policy 0, policy_version 170 (0.0014)
302
+ [2023-07-30 00:10:36,272][09318] Updated weights for policy 0, policy_version 180 (0.0013)
303
+ [2023-07-30 00:10:37,847][09318] Updated weights for policy 0, policy_version 190 (0.0013)
304
+ [2023-07-30 00:10:37,916][03333] Fps is (10 sec: 24166.4, 60 sec: 19456.0, 300 sec: 19456.0). Total num frames: 778240. Throughput: 0: 4481.4. Samples: 179256. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
305
+ [2023-07-30 00:10:37,919][03333] Avg episode reward: [(0, '5.436')]
306
+ [2023-07-30 00:10:37,924][09298] Saving new best policy, reward=5.436!
307
+ [2023-07-30 00:10:39,508][09318] Updated weights for policy 0, policy_version 200 (0.0012)
308
+ [2023-07-30 00:10:41,127][09318] Updated weights for policy 0, policy_version 210 (0.0013)
309
+ [2023-07-30 00:10:42,699][09318] Updated weights for policy 0, policy_version 220 (0.0013)
310
+ [2023-07-30 00:10:42,916][03333] Fps is (10 sec: 24575.9, 60 sec: 20024.9, 300 sec: 20024.9). Total num frames: 901120. Throughput: 0: 4825.9. Samples: 217166. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
311
+ [2023-07-30 00:10:42,918][03333] Avg episode reward: [(0, '6.177')]
312
+ [2023-07-30 00:10:42,925][09298] Saving new best policy, reward=6.177!
313
+ [2023-07-30 00:10:44,342][09318] Updated weights for policy 0, policy_version 230 (0.0013)
314
+ [2023-07-30 00:10:46,048][09318] Updated weights for policy 0, policy_version 240 (0.0013)
315
+ [2023-07-30 00:10:47,846][09318] Updated weights for policy 0, policy_version 250 (0.0015)
316
+ [2023-07-30 00:10:47,916][03333] Fps is (10 sec: 24576.0, 60 sec: 20480.0, 300 sec: 20480.0). Total num frames: 1024000. Throughput: 0: 5529.5. Samples: 253992. Policy #0 lag: (min: 0.0, avg: 1.2, max: 2.0)
317
+ [2023-07-30 00:10:47,918][03333] Avg episode reward: [(0, '6.797')]
318
+ [2023-07-30 00:10:47,925][09298] Saving new best policy, reward=6.797!
319
+ [2023-07-30 00:10:49,605][09318] Updated weights for policy 0, policy_version 260 (0.0014)
320
+ [2023-07-30 00:10:51,389][09318] Updated weights for policy 0, policy_version 270 (0.0015)
321
+ [2023-07-30 00:10:52,916][03333] Fps is (10 sec: 23755.5, 60 sec: 20703.2, 300 sec: 20703.2). Total num frames: 1138688. Throughput: 0: 5913.3. Samples: 271338. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
322
+ [2023-07-30 00:10:52,919][03333] Avg episode reward: [(0, '7.138')]
323
+ [2023-07-30 00:10:52,921][09298] Saving new best policy, reward=7.138!
324
+ [2023-07-30 00:10:53,179][09318] Updated weights for policy 0, policy_version 280 (0.0012)
325
+ [2023-07-30 00:10:54,844][09318] Updated weights for policy 0, policy_version 290 (0.0012)
326
+ [2023-07-30 00:10:56,459][09318] Updated weights for policy 0, policy_version 300 (0.0012)
327
+ [2023-07-30 00:10:57,916][03333] Fps is (10 sec: 24165.8, 60 sec: 21094.3, 300 sec: 21094.3). Total num frames: 1265664. Throughput: 0: 6054.0. Samples: 307156. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
328
+ [2023-07-30 00:10:57,918][03333] Avg episode reward: [(0, '7.637')]
329
+ [2023-07-30 00:10:57,926][09298] Saving new best policy, reward=7.637!
330
+ [2023-07-30 00:10:58,119][09318] Updated weights for policy 0, policy_version 310 (0.0012)
331
+ [2023-07-30 00:10:59,716][09318] Updated weights for policy 0, policy_version 320 (0.0013)
332
+ [2023-07-30 00:11:01,281][09318] Updated weights for policy 0, policy_version 330 (0.0012)
333
+ [2023-07-30 00:11:02,916][03333] Fps is (10 sec: 24986.8, 60 sec: 23142.3, 300 sec: 21362.2). Total num frames: 1388544. Throughput: 0: 6087.9. Samples: 345070. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
334
+ [2023-07-30 00:11:02,918][03333] Avg episode reward: [(0, '9.192')]
335
+ [2023-07-30 00:11:02,921][09298] Saving new best policy, reward=9.192!
336
+ [2023-07-30 00:11:03,042][09318] Updated weights for policy 0, policy_version 340 (0.0013)
337
+ [2023-07-30 00:11:04,595][09318] Updated weights for policy 0, policy_version 350 (0.0013)
338
+ [2023-07-30 00:11:06,341][09318] Updated weights for policy 0, policy_version 360 (0.0012)
339
+ [2023-07-30 00:11:07,916][03333] Fps is (10 sec: 24576.5, 60 sec: 24302.9, 300 sec: 21591.8). Total num frames: 1511424. Throughput: 0: 6083.3. Samples: 363714. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
340
+ [2023-07-30 00:11:07,919][03333] Avg episode reward: [(0, '11.200')]
341
+ [2023-07-30 00:11:07,925][09298] Saving new best policy, reward=11.200!
342
+ [2023-07-30 00:11:08,084][09318] Updated weights for policy 0, policy_version 370 (0.0012)
343
+ [2023-07-30 00:11:09,830][09318] Updated weights for policy 0, policy_version 380 (0.0013)
344
+ [2023-07-30 00:11:11,572][09318] Updated weights for policy 0, policy_version 390 (0.0012)
345
+ [2023-07-30 00:11:12,916][03333] Fps is (10 sec: 23756.9, 60 sec: 24234.7, 300 sec: 21681.5). Total num frames: 1626112. Throughput: 0: 6058.6. Samples: 398738. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
346
+ [2023-07-30 00:11:12,919][03333] Avg episode reward: [(0, '13.847')]
347
+ [2023-07-30 00:11:12,922][09298] Saving new best policy, reward=13.847!
348
+ [2023-07-30 00:11:13,364][09318] Updated weights for policy 0, policy_version 400 (0.0014)
349
+ [2023-07-30 00:11:15,048][09318] Updated weights for policy 0, policy_version 410 (0.0013)
350
+ [2023-07-30 00:11:16,723][09318] Updated weights for policy 0, policy_version 420 (0.0013)
351
+ [2023-07-30 00:11:17,916][03333] Fps is (10 sec: 23756.8, 60 sec: 24234.6, 300 sec: 21862.4). Total num frames: 1748992. Throughput: 0: 6078.8. Samples: 434592. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
352
+ [2023-07-30 00:11:17,918][03333] Avg episode reward: [(0, '16.431')]
353
+ [2023-07-30 00:11:17,928][09298] Saving new best policy, reward=16.431!
354
+ [2023-07-30 00:11:18,358][09318] Updated weights for policy 0, policy_version 430 (0.0013)
355
+ [2023-07-30 00:11:20,021][09318] Updated weights for policy 0, policy_version 440 (0.0013)
356
+ [2023-07-30 00:11:21,604][09318] Updated weights for policy 0, policy_version 450 (0.0013)
357
+ [2023-07-30 00:11:22,916][03333] Fps is (10 sec: 24985.7, 60 sec: 24234.7, 300 sec: 22070.2). Total num frames: 1875968. Throughput: 0: 6098.5. Samples: 453690. Policy #0 lag: (min: 0.0, avg: 1.1, max: 2.0)
358
+ [2023-07-30 00:11:22,919][03333] Avg episode reward: [(0, '18.854')]
359
+ [2023-07-30 00:11:22,923][09298] Saving new best policy, reward=18.854!
360
+ [2023-07-30 00:11:23,226][09318] Updated weights for policy 0, policy_version 460 (0.0013)
361
+ [2023-07-30 00:11:24,846][09318] Updated weights for policy 0, policy_version 470 (0.0012)
362
+ [2023-07-30 00:11:26,507][09318] Updated weights for policy 0, policy_version 480 (0.0012)
363
+ [2023-07-30 00:11:27,916][03333] Fps is (10 sec: 24985.5, 60 sec: 24371.2, 300 sec: 22209.4). Total num frames: 1998848. Throughput: 0: 6094.8. Samples: 491434. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0)
364
+ [2023-07-30 00:11:27,918][03333] Avg episode reward: [(0, '19.345')]
365
+ [2023-07-30 00:11:27,925][09298] Saving new best policy, reward=19.345!
366
+ [2023-07-30 00:11:28,253][09318] Updated weights for policy 0, policy_version 490 (0.0013)
367
+ [2023-07-30 00:11:30,039][09318] Updated weights for policy 0, policy_version 500 (0.0014)
368
+ [2023-07-30 00:11:31,782][09318] Updated weights for policy 0, policy_version 510 (0.0013)
369
+ [2023-07-30 00:11:32,916][03333] Fps is (10 sec: 23756.3, 60 sec: 24302.8, 300 sec: 22247.7). Total num frames: 2113536. Throughput: 0: 6053.9. Samples: 526420. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
370
+ [2023-07-30 00:11:32,919][03333] Avg episode reward: [(0, '16.344')]
371
+ [2023-07-30 00:11:33,474][09318] Updated weights for policy 0, policy_version 520 (0.0013)
372
+ [2023-07-30 00:11:35,226][09318] Updated weights for policy 0, policy_version 530 (0.0013)
373
+ [2023-07-30 00:11:36,862][09318] Updated weights for policy 0, policy_version 540 (0.0013)
374
+ [2023-07-30 00:11:37,916][03333] Fps is (10 sec: 23756.7, 60 sec: 24302.9, 300 sec: 22364.1). Total num frames: 2236416. Throughput: 0: 6065.3. Samples: 544274. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0)
375
+ [2023-07-30 00:11:37,918][03333] Avg episode reward: [(0, '18.867')]
376
+ [2023-07-30 00:11:37,927][09298] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000546_2236416.pth...
377
+ [2023-07-30 00:11:38,448][09318] Updated weights for policy 0, policy_version 550 (0.0013)
378
+ [2023-07-30 00:11:40,076][09318] Updated weights for policy 0, policy_version 560 (0.0013)
379
+ [2023-07-30 00:11:41,688][09318] Updated weights for policy 0, policy_version 570 (0.0013)
380
+ [2023-07-30 00:11:42,916][03333] Fps is (10 sec: 24986.1, 60 sec: 24371.2, 300 sec: 22508.5). Total num frames: 2363392. Throughput: 0: 6115.0. Samples: 582330. Policy #0 lag: (min: 0.0, avg: 1.0, max: 4.0)
381
+ [2023-07-30 00:11:42,918][03333] Avg episode reward: [(0, '20.105')]
382
+ [2023-07-30 00:11:42,926][09298] Saving new best policy, reward=20.105!
383
+ [2023-07-30 00:11:43,319][09318] Updated weights for policy 0, policy_version 580 (0.0013)
384
+ [2023-07-30 00:11:44,935][09318] Updated weights for policy 0, policy_version 590 (0.0013)
385
+ [2023-07-30 00:11:46,598][09318] Updated weights for policy 0, policy_version 600 (0.0012)
386
+ [2023-07-30 00:11:47,916][03333] Fps is (10 sec: 24986.0, 60 sec: 24371.2, 300 sec: 22602.5). Total num frames: 2486272. Throughput: 0: 6101.3. Samples: 619628. Policy #0 lag: (min: 0.0, avg: 1.0, max: 2.0)
387
+ [2023-07-30 00:11:47,918][03333] Avg episode reward: [(0, '19.765')]
388
+ [2023-07-30 00:11:48,369][09318] Updated weights for policy 0, policy_version 610 (0.0012)
389
+ [2023-07-30 00:11:50,128][09318] Updated weights for policy 0, policy_version 620 (0.0012)
390
+ [2023-07-30 00:11:51,789][09318] Updated weights for policy 0, policy_version 630 (0.0012)
391
+ [2023-07-30 00:11:52,916][03333] Fps is (10 sec: 24166.3, 60 sec: 24439.7, 300 sec: 22652.7). Total num frames: 2605056. Throughput: 0: 6074.8. Samples: 637080. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
392
+ [2023-07-30 00:11:52,918][03333] Avg episode reward: [(0, '21.413')]
393
+ [2023-07-30 00:11:52,921][09298] Saving new best policy, reward=21.413!
394
+ [2023-07-30 00:11:53,559][09318] Updated weights for policy 0, policy_version 640 (0.0012)
395
+ [2023-07-30 00:11:55,314][09318] Updated weights for policy 0, policy_version 650 (0.0013)
396
+ [2023-07-30 00:11:56,985][09318] Updated weights for policy 0, policy_version 660 (0.0012)
397
+ [2023-07-30 00:11:57,916][03333] Fps is (10 sec: 23756.3, 60 sec: 24303.0, 300 sec: 22698.6). Total num frames: 2723840. Throughput: 0: 6086.8. Samples: 672644. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0)
398
+ [2023-07-30 00:11:57,918][03333] Avg episode reward: [(0, '22.144')]
399
+ [2023-07-30 00:11:57,925][09298] Saving new best policy, reward=22.144!
400
+ [2023-07-30 00:11:58,631][09318] Updated weights for policy 0, policy_version 670 (0.0013)
401
+ [2023-07-30 00:12:00,250][09318] Updated weights for policy 0, policy_version 680 (0.0013)
402
+ [2023-07-30 00:12:01,825][09318] Updated weights for policy 0, policy_version 690 (0.0013)
403
+ [2023-07-30 00:12:02,916][03333] Fps is (10 sec: 24576.0, 60 sec: 24371.2, 300 sec: 22806.5). Total num frames: 2850816. Throughput: 0: 6133.8. Samples: 710614. Policy #0 lag: (min: 0.0, avg: 1.2, max: 3.0)
404
+ [2023-07-30 00:12:02,919][03333] Avg episode reward: [(0, '24.120')]
405
+ [2023-07-30 00:12:02,921][09298] Saving new best policy, reward=24.120!
406
+ [2023-07-30 00:12:03,453][09318] Updated weights for policy 0, policy_version 700 (0.0012)
407
+ [2023-07-30 00:12:05,094][09318] Updated weights for policy 0, policy_version 710 (0.0013)
408
+ [2023-07-30 00:12:06,741][09318] Updated weights for policy 0, policy_version 720 (0.0012)
409
+ [2023-07-30 00:12:07,916][03333] Fps is (10 sec: 25395.7, 60 sec: 24439.5, 300 sec: 22906.1). Total num frames: 2977792. Throughput: 0: 6127.2. Samples: 729412. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0)
410
+ [2023-07-30 00:12:07,918][03333] Avg episode reward: [(0, '23.281')]
411
+ [2023-07-30 00:12:08,393][09318] Updated weights for policy 0, policy_version 730 (0.0013)
412
+ [2023-07-30 00:12:10,207][09318] Updated weights for policy 0, policy_version 740 (0.0013)
413
+ [2023-07-30 00:12:11,896][09318] Updated weights for policy 0, policy_version 750 (0.0013)
414
+ [2023-07-30 00:12:12,916][03333] Fps is (10 sec: 24166.5, 60 sec: 24439.5, 300 sec: 22907.3). Total num frames: 3092480. Throughput: 0: 6091.2. Samples: 765536. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
415
+ [2023-07-30 00:12:12,918][03333] Avg episode reward: [(0, '24.386')]
416
+ [2023-07-30 00:12:12,921][09298] Saving new best policy, reward=24.386!
417
+ [2023-07-30 00:12:13,608][09318] Updated weights for policy 0, policy_version 760 (0.0013)
418
+ [2023-07-30 00:12:15,370][09318] Updated weights for policy 0, policy_version 770 (0.0013)
419
+ [2023-07-30 00:12:17,048][09318] Updated weights for policy 0, policy_version 780 (0.0014)
420
+ [2023-07-30 00:12:17,916][03333] Fps is (10 sec: 23756.3, 60 sec: 24439.4, 300 sec: 22966.8). Total num frames: 3215360. Throughput: 0: 6109.8. Samples: 801362. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0)
421
+ [2023-07-30 00:12:17,918][03333] Avg episode reward: [(0, '22.909')]
422
+ [2023-07-30 00:12:18,653][09318] Updated weights for policy 0, policy_version 790 (0.0013)
423
+ [2023-07-30 00:12:20,270][09318] Updated weights for policy 0, policy_version 800 (0.0012)
424
+ [2023-07-30 00:12:21,876][09318] Updated weights for policy 0, policy_version 810 (0.0013)
425
+ [2023-07-30 00:12:22,916][03333] Fps is (10 sec: 24985.1, 60 sec: 24439.4, 300 sec: 23050.6). Total num frames: 3342336. Throughput: 0: 6136.0. Samples: 820394. Policy #0 lag: (min: 0.0, avg: 1.1, max: 2.0)
426
+ [2023-07-30 00:12:22,919][03333] Avg episode reward: [(0, '22.241')]
427
+ [2023-07-30 00:12:23,487][09318] Updated weights for policy 0, policy_version 820 (0.0013)
428
+ [2023-07-30 00:12:25,106][09318] Updated weights for policy 0, policy_version 830 (0.0013)
429
+ [2023-07-30 00:12:26,697][09318] Updated weights for policy 0, policy_version 840 (0.0014)
430
+ [2023-07-30 00:12:27,916][03333] Fps is (10 sec: 25395.5, 60 sec: 24507.8, 300 sec: 23128.7). Total num frames: 3469312. Throughput: 0: 6136.9. Samples: 858490. Policy #0 lag: (min: 0.0, avg: 1.4, max: 3.0)
431
+ [2023-07-30 00:12:27,919][03333] Avg episode reward: [(0, '23.244')]
432
+ [2023-07-30 00:12:28,418][09318] Updated weights for policy 0, policy_version 850 (0.0012)
433
+ [2023-07-30 00:12:30,118][09318] Updated weights for policy 0, policy_version 860 (0.0012)
434
+ [2023-07-30 00:12:31,935][09318] Updated weights for policy 0, policy_version 870 (0.0012)
435
+ [2023-07-30 00:12:32,916][03333] Fps is (10 sec: 24166.9, 60 sec: 24507.8, 300 sec: 23122.6). Total num frames: 3584000. Throughput: 0: 6100.1. Samples: 894134. Policy #0 lag: (min: 0.0, avg: 1.0, max: 3.0)
436
+ [2023-07-30 00:12:32,919][03333] Avg episode reward: [(0, '25.891')]
437
+ [2023-07-30 00:12:32,926][09298] Saving new best policy, reward=25.891!
438
+ [2023-07-30 00:12:33,637][09318] Updated weights for policy 0, policy_version 880 (0.0014)
439
+ [2023-07-30 00:12:35,397][09318] Updated weights for policy 0, policy_version 890 (0.0012)
440
+ [2023-07-30 00:12:37,113][09318] Updated weights for policy 0, policy_version 900 (0.0013)
441
+ [2023-07-30 00:12:37,916][03333] Fps is (10 sec: 23756.5, 60 sec: 24507.7, 300 sec: 23168.0). Total num frames: 3706880. Throughput: 0: 6106.0. Samples: 911850. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
442
+ [2023-07-30 00:12:37,918][03333] Avg episode reward: [(0, '26.956')]
443
+ [2023-07-30 00:12:37,928][09298] Saving new best policy, reward=26.956!
444
+ [2023-07-30 00:12:38,745][09318] Updated weights for policy 0, policy_version 910 (0.0012)
445
+ [2023-07-30 00:12:40,389][09318] Updated weights for policy 0, policy_version 920 (0.0012)
446
+ [2023-07-30 00:12:41,989][09318] Updated weights for policy 0, policy_version 930 (0.0012)
447
+ [2023-07-30 00:12:42,916][03333] Fps is (10 sec: 24576.1, 60 sec: 24439.5, 300 sec: 23210.7). Total num frames: 3829760. Throughput: 0: 6140.6. Samples: 948970. Policy #0 lag: (min: 0.0, avg: 1.3, max: 3.0)
448
+ [2023-07-30 00:12:42,919][03333] Avg episode reward: [(0, '22.966')]
449
+ [2023-07-30 00:12:43,555][09318] Updated weights for policy 0, policy_version 940 (0.0012)
450
+ [2023-07-30 00:12:45,178][09318] Updated weights for policy 0, policy_version 950 (0.0013)
451
+ [2023-07-30 00:12:46,807][09318] Updated weights for policy 0, policy_version 960 (0.0013)
452
+ [2023-07-30 00:12:47,916][03333] Fps is (10 sec: 24985.4, 60 sec: 24507.6, 300 sec: 23274.9). Total num frames: 3956736. Throughput: 0: 6148.9. Samples: 987316. Policy #0 lag: (min: 0.0, avg: 1.1, max: 3.0)
453
+ [2023-07-30 00:12:47,918][03333] Avg episode reward: [(0, '28.867')]
454
+ [2023-07-30 00:12:47,931][09298] Saving new best policy, reward=28.867!
455
+ [2023-07-30 00:12:48,449][09318] Updated weights for policy 0, policy_version 970 (0.0016)
456
+ [2023-07-30 00:12:49,830][09298] Stopping Batcher_0...
457
+ [2023-07-30 00:12:49,831][09298] Loop batcher_evt_loop terminating...
458
+ [2023-07-30 00:12:49,834][09298] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
459
+ [2023-07-30 00:12:49,830][03333] Component Batcher_0 stopped!
460
+ [2023-07-30 00:12:49,835][03333] Component RolloutWorker_w6 process died already! Don't wait for it.
461
+ [2023-07-30 00:12:49,845][09341] Stopping RolloutWorker_w10...
462
+ [2023-07-30 00:12:49,846][09341] Loop rollout_proc10_evt_loop terminating...
463
+ [2023-07-30 00:12:49,846][09325] Stopping RolloutWorker_w2...
464
+ [2023-07-30 00:12:49,846][09342] Stopping RolloutWorker_w11...
465
+ [2023-07-30 00:12:49,844][09326] Stopping RolloutWorker_w7...
466
+ [2023-07-30 00:12:49,846][09323] Stopping RolloutWorker_w5...
467
+ [2023-07-30 00:12:49,847][09342] Loop rollout_proc11_evt_loop terminating...
468
+ [2023-07-30 00:12:49,846][09325] Loop rollout_proc2_evt_loop terminating...
469
+ [2023-07-30 00:12:49,844][03333] Component RolloutWorker_w7 stopped!
470
+ [2023-07-30 00:12:49,847][09323] Loop rollout_proc5_evt_loop terminating...
471
+ [2023-07-30 00:12:49,847][09326] Loop rollout_proc7_evt_loop terminating...
472
+ [2023-07-30 00:12:49,848][09320] Stopping RolloutWorker_w0...
473
+ [2023-07-30 00:12:49,848][09320] Loop rollout_proc0_evt_loop terminating...
474
+ [2023-07-30 00:12:49,847][03333] Component RolloutWorker_w10 stopped!
475
+ [2023-07-30 00:12:49,851][09321] Stopping RolloutWorker_w3...
476
+ [2023-07-30 00:12:49,851][09319] Stopping RolloutWorker_w1...
477
+ [2023-07-30 00:12:49,851][09321] Loop rollout_proc3_evt_loop terminating...
478
+ [2023-07-30 00:12:49,853][09319] Loop rollout_proc1_evt_loop terminating...
479
+ [2023-07-30 00:12:49,850][03333] Component RolloutWorker_w2 stopped!
480
+ [2023-07-30 00:12:49,854][09349] Stopping RolloutWorker_w14...
481
+ [2023-07-30 00:12:49,855][09327] Stopping RolloutWorker_w8...
482
+ [2023-07-30 00:12:49,855][09349] Loop rollout_proc14_evt_loop terminating...
483
+ [2023-07-30 00:12:49,854][03333] Component RolloutWorker_w11 stopped!
484
+ [2023-07-30 00:12:49,855][09327] Loop rollout_proc8_evt_loop terminating...
485
+ [2023-07-30 00:12:49,857][03333] Component RolloutWorker_w5 stopped!
486
+ [2023-07-30 00:12:49,860][09318] Weights refcount: 2 0
487
+ [2023-07-30 00:12:49,858][03333] Component RolloutWorker_w0 stopped!
488
+ [2023-07-30 00:12:49,862][09318] Stopping InferenceWorker_p0-w0...
489
+ [2023-07-30 00:12:49,862][09318] Loop inference_proc0-0_evt_loop terminating...
490
+ [2023-07-30 00:12:49,861][03333] Component RolloutWorker_w3 stopped!
491
+ [2023-07-30 00:12:49,864][09348] Stopping RolloutWorker_w15...
492
+ [2023-07-30 00:12:49,864][09343] Stopping RolloutWorker_w12...
493
+ [2023-07-30 00:12:49,864][09348] Loop rollout_proc15_evt_loop terminating...
494
+ [2023-07-30 00:12:49,864][09343] Loop rollout_proc12_evt_loop terminating...
495
+ [2023-07-30 00:12:49,864][03333] Component RolloutWorker_w1 stopped!
496
+ [2023-07-30 00:12:49,866][03333] Component RolloutWorker_w14 stopped!
497
+ [2023-07-30 00:12:49,869][03333] Component RolloutWorker_w8 stopped!
498
+ [2023-07-30 00:12:49,870][09340] Stopping RolloutWorker_w13...
499
+ [2023-07-30 00:12:49,870][09340] Loop rollout_proc13_evt_loop terminating...
500
+ [2023-07-30 00:12:49,870][03333] Component InferenceWorker_p0-w0 stopped!
501
+ [2023-07-30 00:12:49,873][03333] Component RolloutWorker_w15 stopped!
502
+ [2023-07-30 00:12:49,874][03333] Component RolloutWorker_w12 stopped!
503
+ [2023-07-30 00:12:49,877][03333] Component RolloutWorker_w13 stopped!
504
+ [2023-07-30 00:12:49,879][09322] Stopping RolloutWorker_w4...
505
+ [2023-07-30 00:12:49,879][09322] Loop rollout_proc4_evt_loop terminating...
506
+ [2023-07-30 00:12:49,879][03333] Component RolloutWorker_w4 stopped!
507
+ [2023-07-30 00:12:49,886][09328] Stopping RolloutWorker_w9...
508
+ [2023-07-30 00:12:49,887][09328] Loop rollout_proc9_evt_loop terminating...
509
+ [2023-07-30 00:12:49,886][03333] Component RolloutWorker_w9 stopped!
510
+ [2023-07-30 00:12:49,924][09298] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
511
+ [2023-07-30 00:12:50,039][09298] Stopping LearnerWorker_p0...
512
+ [2023-07-30 00:12:50,040][09298] Loop learner_proc0_evt_loop terminating...
513
+ [2023-07-30 00:12:50,039][03333] Component LearnerWorker_p0 stopped!
514
+ [2023-07-30 00:12:50,042][03333] Waiting for process learner_proc0 to stop...
515
+ [2023-07-30 00:12:51,319][03333] Waiting for process inference_proc0-0 to join...
516
+ [2023-07-30 00:12:51,321][03333] Waiting for process rollout_proc0 to join...
517
+ [2023-07-30 00:12:51,323][03333] Waiting for process rollout_proc1 to join...
518
+ [2023-07-30 00:12:51,325][03333] Waiting for process rollout_proc2 to join...
519
+ [2023-07-30 00:12:51,327][03333] Waiting for process rollout_proc3 to join...
520
+ [2023-07-30 00:12:51,329][03333] Waiting for process rollout_proc4 to join...
521
+ [2023-07-30 00:12:51,330][03333] Waiting for process rollout_proc5 to join...
522
+ [2023-07-30 00:12:51,332][03333] Waiting for process rollout_proc6 to join...
523
+ [2023-07-30 00:12:51,333][03333] Waiting for process rollout_proc7 to join...
524
+ [2023-07-30 00:12:51,336][03333] Waiting for process rollout_proc8 to join...
525
+ [2023-07-30 00:12:51,337][03333] Waiting for process rollout_proc9 to join...
526
+ [2023-07-30 00:12:51,339][03333] Waiting for process rollout_proc10 to join...
527
+ [2023-07-30 00:12:51,340][03333] Waiting for process rollout_proc11 to join...
528
+ [2023-07-30 00:12:51,342][03333] Waiting for process rollout_proc12 to join...
529
+ [2023-07-30 00:12:51,343][03333] Waiting for process rollout_proc13 to join...
530
+ [2023-07-30 00:12:51,345][03333] Waiting for process rollout_proc14 to join...
531
+ [2023-07-30 00:12:51,346][03333] Waiting for process rollout_proc15 to join...
532
+ [2023-07-30 00:12:51,348][03333] Batcher 0 profile tree view:
533
+ batching: 30.6303, releasing_batches: 0.0649
534
+ [2023-07-30 00:12:51,349][03333] InferenceWorker_p0-w0 profile tree view:
535
+ wait_policy: 0.0001
536
+ wait_policy_total: 4.3616
537
+ update_model: 2.7433
538
+ weight_update: 0.0012
539
+ one_step: 0.0029
540
+ handle_policy_step: 153.8284
541
+ deserialize: 7.6692, stack: 0.8917, obs_to_device_normalize: 34.2510, forward: 74.3801, send_messages: 13.1847
542
+ prepare_outputs: 17.1719
543
+ to_cpu: 9.9411
544
+ [2023-07-30 00:12:51,350][03333] Learner 0 profile tree view:
545
+ misc: 0.0056, prepare_batch: 11.6529
546
+ train: 19.4353
547
+ epoch_init: 0.0060, minibatch_init: 0.0062, losses_postprocess: 0.4999, kl_divergence: 0.3932, after_optimizer: 0.6868
548
+ calculate_losses: 7.8723
549
+ losses_init: 0.0037, forward_head: 0.6934, bptt_initial: 3.7548, tail: 0.6575, advantages_returns: 0.1692, losses: 1.1797
550
+ bptt: 1.2323
551
+ bptt_forward_core: 1.1786
552
+ update: 9.6174
553
+ clip: 2.4035
554
+ [2023-07-30 00:12:51,351][03333] RolloutWorker_w0 profile tree view:
555
+ wait_for_trajectories: 0.1039, enqueue_policy_requests: 5.1811, env_step: 93.2937, overhead: 7.2035, complete_rollouts: 0.3422
556
+ save_policy_outputs: 6.3864
557
+ split_output_tensors: 2.9567
558
+ [2023-07-30 00:12:51,352][03333] RolloutWorker_w15 profile tree view:
559
+ wait_for_trajectories: 0.0812, enqueue_policy_requests: 3.8036, env_step: 121.5952, overhead: 5.0115, complete_rollouts: 0.1824
560
+ save_policy_outputs: 4.4669
561
+ split_output_tensors: 2.1261
562
+ [2023-07-30 00:12:51,353][03333] Loop Runner_EvtLoop terminating...
563
+ [2023-07-30 00:12:51,354][03333] Runner profile tree view:
564
+ main_loop: 188.1747
565
+ [2023-07-30 00:12:51,358][03333] Collected {0: 4005888}, FPS: 21288.1
566
+ [2023-07-30 00:15:28,891][03333] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
567
+ [2023-07-30 00:15:28,892][03333] Overriding arg 'num_workers' with value 1 passed from command line
568
+ [2023-07-30 00:15:28,893][03333] Adding new argument 'no_render'=True that is not in the saved config file!
569
+ [2023-07-30 00:15:28,895][03333] Adding new argument 'save_video'=True that is not in the saved config file!
570
+ [2023-07-30 00:15:28,896][03333] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
571
+ [2023-07-30 00:15:28,897][03333] Adding new argument 'video_name'=None that is not in the saved config file!
572
+ [2023-07-30 00:15:28,899][03333] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
573
+ [2023-07-30 00:15:28,900][03333] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
574
+ [2023-07-30 00:15:28,902][03333] Adding new argument 'push_to_hub'=False that is not in the saved config file!
575
+ [2023-07-30 00:15:28,903][03333] Adding new argument 'hf_repository'=None that is not in the saved config file!
576
+ [2023-07-30 00:15:28,905][03333] Adding new argument 'policy_index'=0 that is not in the saved config file!
577
+ [2023-07-30 00:15:28,906][03333] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
578
+ [2023-07-30 00:15:28,907][03333] Adding new argument 'train_script'=None that is not in the saved config file!
579
+ [2023-07-30 00:15:28,908][03333] Adding new argument 'enjoy_script'=None that is not in the saved config file!
580
+ [2023-07-30 00:15:28,910][03333] Using frameskip 1 and render_action_repeat=4 for evaluation
581
+ [2023-07-30 00:15:28,944][03333] Doom resolution: 160x120, resize resolution: (128, 72)
582
+ [2023-07-30 00:15:28,947][03333] RunningMeanStd input shape: (3, 72, 128)
583
+ [2023-07-30 00:15:28,949][03333] RunningMeanStd input shape: (1,)
584
+ [2023-07-30 00:15:28,963][03333] ConvEncoder: input_channels=3
585
+ [2023-07-30 00:15:29,097][03333] Conv encoder output size: 512
586
+ [2023-07-30 00:15:29,099][03333] Policy head output size: 512
587
+ [2023-07-30 00:15:31,896][03333] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
588
+ [2023-07-30 00:15:33,234][03333] Num frames 100...
589
+ [2023-07-30 00:15:33,356][03333] Num frames 200...
590
+ [2023-07-30 00:15:33,480][03333] Num frames 300...
591
+ [2023-07-30 00:15:33,601][03333] Num frames 400...
592
+ [2023-07-30 00:15:33,726][03333] Num frames 500...
593
+ [2023-07-30 00:15:33,850][03333] Num frames 600...
594
+ [2023-07-30 00:15:33,973][03333] Num frames 700...
595
+ [2023-07-30 00:15:34,098][03333] Num frames 800...
596
+ [2023-07-30 00:15:34,193][03333] Avg episode rewards: #0: 18.320, true rewards: #0: 8.320
597
+ [2023-07-30 00:15:34,194][03333] Avg episode reward: 18.320, avg true_objective: 8.320
598
+ [2023-07-30 00:15:34,278][03333] Num frames 900...
599
+ [2023-07-30 00:15:34,425][03333] Avg episode rewards: #0: 9.870, true rewards: #0: 4.870
600
+ [2023-07-30 00:15:34,427][03333] Avg episode reward: 9.870, avg true_objective: 4.870
601
+ [2023-07-30 00:15:34,459][03333] Num frames 1000...
602
+ [2023-07-30 00:15:34,578][03333] Num frames 1100...
603
+ [2023-07-30 00:15:34,704][03333] Num frames 1200...
604
+ [2023-07-30 00:15:34,827][03333] Num frames 1300...
605
+ [2023-07-30 00:15:34,951][03333] Num frames 1400...
606
+ [2023-07-30 00:15:35,074][03333] Num frames 1500...
607
+ [2023-07-30 00:15:35,204][03333] Num frames 1600...
608
+ [2023-07-30 00:15:35,333][03333] Num frames 1700...
609
+ [2023-07-30 00:15:35,453][03333] Num frames 1800...
610
+ [2023-07-30 00:15:35,580][03333] Num frames 1900...
611
+ [2023-07-30 00:15:35,704][03333] Num frames 2000...
612
+ [2023-07-30 00:15:35,796][03333] Avg episode rewards: #0: 15.100, true rewards: #0: 6.767
613
+ [2023-07-30 00:15:35,797][03333] Avg episode reward: 15.100, avg true_objective: 6.767
614
+ [2023-07-30 00:15:35,883][03333] Num frames 2100...
615
+ [2023-07-30 00:15:36,005][03333] Num frames 2200...
616
+ [2023-07-30 00:15:36,130][03333] Num frames 2300...
617
+ [2023-07-30 00:15:36,253][03333] Num frames 2400...
618
+ [2023-07-30 00:15:36,379][03333] Num frames 2500...
619
+ [2023-07-30 00:15:36,527][03333] Avg episode rewards: #0: 14.185, true rewards: #0: 6.435
620
+ [2023-07-30 00:15:36,529][03333] Avg episode reward: 14.185, avg true_objective: 6.435
621
+ [2023-07-30 00:15:36,563][03333] Num frames 2600...
622
+ [2023-07-30 00:15:36,688][03333] Num frames 2700...
623
+ [2023-07-30 00:15:36,814][03333] Num frames 2800...
624
+ [2023-07-30 00:15:36,940][03333] Num frames 2900...
625
+ [2023-07-30 00:15:37,066][03333] Num frames 3000...
626
+ [2023-07-30 00:15:37,192][03333] Num frames 3100...
627
+ [2023-07-30 00:15:37,318][03333] Num frames 3200...
628
+ [2023-07-30 00:15:37,449][03333] Num frames 3300...
629
+ [2023-07-30 00:15:37,581][03333] Num frames 3400...
630
+ [2023-07-30 00:15:37,715][03333] Num frames 3500...
631
+ [2023-07-30 00:15:37,846][03333] Num frames 3600...
632
+ [2023-07-30 00:15:37,971][03333] Num frames 3700...
633
+ [2023-07-30 00:15:38,093][03333] Num frames 3800...
634
+ [2023-07-30 00:15:38,216][03333] Num frames 3900...
635
+ [2023-07-30 00:15:38,343][03333] Num frames 4000...
636
+ [2023-07-30 00:15:38,469][03333] Num frames 4100...
637
+ [2023-07-30 00:15:38,593][03333] Num frames 4200...
638
+ [2023-07-30 00:15:38,721][03333] Num frames 4300...
639
+ [2023-07-30 00:15:38,819][03333] Avg episode rewards: #0: 21.268, true rewards: #0: 8.668
640
+ [2023-07-30 00:15:38,821][03333] Avg episode reward: 21.268, avg true_objective: 8.668
641
+ [2023-07-30 00:15:38,903][03333] Num frames 4400...
642
+ [2023-07-30 00:15:39,027][03333] Num frames 4500...
643
+ [2023-07-30 00:15:39,153][03333] Num frames 4600...
644
+ [2023-07-30 00:15:39,321][03333] Avg episode rewards: #0: 18.977, true rewards: #0: 7.810
645
+ [2023-07-30 00:15:39,322][03333] Avg episode reward: 18.977, avg true_objective: 7.810
646
+ [2023-07-30 00:15:39,341][03333] Num frames 4700...
647
+ [2023-07-30 00:15:39,471][03333] Num frames 4800...
648
+ [2023-07-30 00:15:39,602][03333] Num frames 4900...
649
+ [2023-07-30 00:15:39,733][03333] Num frames 5000...
650
+ [2023-07-30 00:15:39,864][03333] Num frames 5100...
651
+ [2023-07-30 00:15:39,996][03333] Num frames 5200...
652
+ [2023-07-30 00:15:40,129][03333] Num frames 5300...
653
+ [2023-07-30 00:15:40,262][03333] Num frames 5400...
654
+ [2023-07-30 00:15:40,394][03333] Num frames 5500...
655
+ [2023-07-30 00:15:40,524][03333] Num frames 5600...
656
+ [2023-07-30 00:15:40,656][03333] Num frames 5700...
657
+ [2023-07-30 00:15:40,789][03333] Num frames 5800...
658
+ [2023-07-30 00:15:40,936][03333] Avg episode rewards: #0: 20.243, true rewards: #0: 8.386
659
+ [2023-07-30 00:15:40,937][03333] Avg episode reward: 20.243, avg true_objective: 8.386
660
+ [2023-07-30 00:15:40,976][03333] Num frames 5900...
661
+ [2023-07-30 00:15:41,106][03333] Num frames 6000...
662
+ [2023-07-30 00:15:41,238][03333] Num frames 6100...
663
+ [2023-07-30 00:15:41,358][03333] Num frames 6200...
664
+ [2023-07-30 00:15:41,477][03333] Num frames 6300...
665
+ [2023-07-30 00:15:41,601][03333] Num frames 6400...
666
+ [2023-07-30 00:15:41,726][03333] Num frames 6500...
667
+ [2023-07-30 00:15:41,847][03333] Num frames 6600...
668
+ [2023-07-30 00:15:41,968][03333] Num frames 6700...
669
+ [2023-07-30 00:15:42,091][03333] Num frames 6800...
670
+ [2023-07-30 00:15:42,213][03333] Num frames 6900...
671
+ [2023-07-30 00:15:42,295][03333] Avg episode rewards: #0: 20.901, true rewards: #0: 8.651
672
+ [2023-07-30 00:15:42,296][03333] Avg episode reward: 20.901, avg true_objective: 8.651
673
+ [2023-07-30 00:15:42,392][03333] Num frames 7000...
674
+ [2023-07-30 00:15:42,514][03333] Num frames 7100...
675
+ [2023-07-30 00:15:42,634][03333] Num frames 7200...
676
+ [2023-07-30 00:15:42,755][03333] Num frames 7300...
677
+ [2023-07-30 00:15:42,875][03333] Num frames 7400...
678
+ [2023-07-30 00:15:42,999][03333] Num frames 7500...
679
+ [2023-07-30 00:15:43,123][03333] Num frames 7600...
680
+ [2023-07-30 00:15:43,246][03333] Num frames 7700...
681
+ [2023-07-30 00:15:43,370][03333] Num frames 7800...
682
+ [2023-07-30 00:15:43,494][03333] Num frames 7900...
683
+ [2023-07-30 00:15:43,618][03333] Num frames 8000...
684
+ [2023-07-30 00:15:43,742][03333] Num frames 8100...
685
+ [2023-07-30 00:15:43,863][03333] Num frames 8200...
686
+ [2023-07-30 00:15:43,986][03333] Num frames 8300...
687
+ [2023-07-30 00:15:44,110][03333] Num frames 8400...
688
+ [2023-07-30 00:15:44,235][03333] Avg episode rewards: #0: 22.728, true rewards: #0: 9.394
689
+ [2023-07-30 00:15:44,237][03333] Avg episode reward: 22.728, avg true_objective: 9.394
690
+ [2023-07-30 00:15:44,292][03333] Num frames 8500...
691
+ [2023-07-30 00:15:44,415][03333] Num frames 8600...
692
+ [2023-07-30 00:15:44,537][03333] Num frames 8700...
693
+ [2023-07-30 00:15:44,659][03333] Num frames 8800...
694
+ [2023-07-30 00:15:44,783][03333] Num frames 8900...
695
+ [2023-07-30 00:15:44,905][03333] Num frames 9000...
696
+ [2023-07-30 00:15:45,029][03333] Num frames 9100...
697
+ [2023-07-30 00:15:45,152][03333] Num frames 9200...
698
+ [2023-07-30 00:15:45,278][03333] Num frames 9300...
699
+ [2023-07-30 00:15:45,435][03333] Avg episode rewards: #0: 22.383, true rewards: #0: 9.383
700
+ [2023-07-30 00:15:45,437][03333] Avg episode reward: 22.383, avg true_objective: 9.383
701
+ [2023-07-30 00:16:07,718][03333] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
702
+ [2023-07-30 00:17:55,672][03333] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
703
+ [2023-07-30 00:17:55,674][03333] Overriding arg 'num_workers' with value 1 passed from command line
704
+ [2023-07-30 00:17:55,675][03333] Adding new argument 'no_render'=True that is not in the saved config file!
705
+ [2023-07-30 00:17:55,677][03333] Adding new argument 'save_video'=True that is not in the saved config file!
706
+ [2023-07-30 00:17:55,678][03333] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
707
+ [2023-07-30 00:17:55,680][03333] Adding new argument 'video_name'=None that is not in the saved config file!
708
+ [2023-07-30 00:17:55,681][03333] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
709
+ [2023-07-30 00:17:55,682][03333] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
710
+ [2023-07-30 00:17:55,683][03333] Adding new argument 'push_to_hub'=True that is not in the saved config file!
711
+ [2023-07-30 00:17:55,685][03333] Adding new argument 'hf_repository'='timjwhite/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
712
+ [2023-07-30 00:17:55,686][03333] Adding new argument 'policy_index'=0 that is not in the saved config file!
713
+ [2023-07-30 00:17:55,687][03333] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
714
+ [2023-07-30 00:17:55,689][03333] Adding new argument 'train_script'=None that is not in the saved config file!
715
+ [2023-07-30 00:17:55,690][03333] Adding new argument 'enjoy_script'=None that is not in the saved config file!
716
+ [2023-07-30 00:17:55,691][03333] Using frameskip 1 and render_action_repeat=4 for evaluation
717
+ [2023-07-30 00:17:55,721][03333] RunningMeanStd input shape: (3, 72, 128)
718
+ [2023-07-30 00:17:55,723][03333] RunningMeanStd input shape: (1,)
719
+ [2023-07-30 00:17:55,734][03333] ConvEncoder: input_channels=3
720
+ [2023-07-30 00:17:55,772][03333] Conv encoder output size: 512
721
+ [2023-07-30 00:17:55,773][03333] Policy head output size: 512
722
+ [2023-07-30 00:17:55,792][03333] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
723
+ [2023-07-30 00:17:56,256][03333] Num frames 100...
724
+ [2023-07-30 00:17:56,383][03333] Num frames 200...
725
+ [2023-07-30 00:17:56,506][03333] Num frames 300...
726
+ [2023-07-30 00:17:56,630][03333] Num frames 400...
727
+ [2023-07-30 00:17:56,756][03333] Num frames 500...
728
+ [2023-07-30 00:17:56,883][03333] Num frames 600...
729
+ [2023-07-30 00:17:57,008][03333] Num frames 700...
730
+ [2023-07-30 00:17:57,141][03333] Num frames 800...
731
+ [2023-07-30 00:17:57,269][03333] Num frames 900...
732
+ [2023-07-30 00:17:57,396][03333] Num frames 1000...
733
+ [2023-07-30 00:17:57,521][03333] Num frames 1100...
734
+ [2023-07-30 00:17:57,647][03333] Num frames 1200...
735
+ [2023-07-30 00:17:57,775][03333] Num frames 1300...
736
+ [2023-07-30 00:17:57,906][03333] Num frames 1400...
737
+ [2023-07-30 00:17:58,032][03333] Num frames 1500...
738
+ [2023-07-30 00:17:58,162][03333] Num frames 1600...
739
+ [2023-07-30 00:17:58,289][03333] Num frames 1700...
740
+ [2023-07-30 00:17:58,417][03333] Num frames 1800...
741
+ [2023-07-30 00:17:58,541][03333] Num frames 1900...
742
+ [2023-07-30 00:17:58,662][03333] Num frames 2000...
743
+ [2023-07-30 00:17:58,791][03333] Num frames 2100...
744
+ [2023-07-30 00:17:58,844][03333] Avg episode rewards: #0: 58.999, true rewards: #0: 21.000
745
+ [2023-07-30 00:17:58,845][03333] Avg episode reward: 58.999, avg true_objective: 21.000
746
+ [2023-07-30 00:17:58,965][03333] Num frames 2200...
747
+ [2023-07-30 00:17:59,085][03333] Num frames 2300...
748
+ [2023-07-30 00:17:59,209][03333] Num frames 2400...
749
+ [2023-07-30 00:17:59,333][03333] Num frames 2500...
750
+ [2023-07-30 00:17:59,454][03333] Num frames 2600...
751
+ [2023-07-30 00:17:59,524][03333] Avg episode rewards: #0: 33.560, true rewards: #0: 13.060
752
+ [2023-07-30 00:17:59,525][03333] Avg episode reward: 33.560, avg true_objective: 13.060
753
+ [2023-07-30 00:17:59,638][03333] Num frames 2700...
754
+ [2023-07-30 00:17:59,758][03333] Num frames 2800...
755
+ [2023-07-30 00:17:59,876][03333] Num frames 2900...
756
+ [2023-07-30 00:17:59,996][03333] Num frames 3000...
757
+ [2023-07-30 00:18:00,121][03333] Avg episode rewards: #0: 24.200, true rewards: #0: 10.200
758
+ [2023-07-30 00:18:00,122][03333] Avg episode reward: 24.200, avg true_objective: 10.200
759
+ [2023-07-30 00:18:00,171][03333] Num frames 3100...
760
+ [2023-07-30 00:18:00,290][03333] Num frames 3200...
761
+ [2023-07-30 00:18:00,413][03333] Num frames 3300...
762
+ [2023-07-30 00:18:00,533][03333] Num frames 3400...
763
+ [2023-07-30 00:18:00,652][03333] Num frames 3500...
764
+ [2023-07-30 00:18:00,776][03333] Num frames 3600...
765
+ [2023-07-30 00:18:00,897][03333] Num frames 3700...
766
+ [2023-07-30 00:18:01,018][03333] Num frames 3800...
767
+ [2023-07-30 00:18:01,139][03333] Num frames 3900...
768
+ [2023-07-30 00:18:01,260][03333] Num frames 4000...
769
+ [2023-07-30 00:18:01,378][03333] Avg episode rewards: #0: 23.380, true rewards: #0: 10.130
770
+ [2023-07-30 00:18:01,379][03333] Avg episode reward: 23.380, avg true_objective: 10.130
771
+ [2023-07-30 00:18:01,440][03333] Num frames 4100...
772
+ [2023-07-30 00:18:01,561][03333] Num frames 4200...
773
+ [2023-07-30 00:18:01,684][03333] Num frames 4300...
774
+ [2023-07-30 00:18:01,807][03333] Num frames 4400...
775
+ [2023-07-30 00:18:01,931][03333] Num frames 4500...
776
+ [2023-07-30 00:18:02,052][03333] Num frames 4600...
777
+ [2023-07-30 00:18:02,213][03333] Avg episode rewards: #0: 21.574, true rewards: #0: 9.374
778
+ [2023-07-30 00:18:02,215][03333] Avg episode reward: 21.574, avg true_objective: 9.374
779
+ [2023-07-30 00:18:02,233][03333] Num frames 4700...
780
+ [2023-07-30 00:18:02,358][03333] Num frames 4800...
781
+ [2023-07-30 00:18:02,481][03333] Num frames 4900...
782
+ [2023-07-30 00:18:02,603][03333] Num frames 5000...
783
+ [2023-07-30 00:18:02,726][03333] Num frames 5100...
784
+ [2023-07-30 00:18:02,850][03333] Num frames 5200...
785
+ [2023-07-30 00:18:02,974][03333] Num frames 5300...
786
+ [2023-07-30 00:18:03,096][03333] Num frames 5400...
787
+ [2023-07-30 00:18:03,218][03333] Num frames 5500...
788
+ [2023-07-30 00:18:03,343][03333] Num frames 5600...
789
+ [2023-07-30 00:18:03,473][03333] Num frames 5700...
790
+ [2023-07-30 00:18:03,602][03333] Num frames 5800...
791
+ [2023-07-30 00:18:03,724][03333] Num frames 5900...
792
+ [2023-07-30 00:18:03,848][03333] Num frames 6000...
793
+ [2023-07-30 00:18:03,970][03333] Num frames 6100...
794
+ [2023-07-30 00:18:04,095][03333] Num frames 6200...
795
+ [2023-07-30 00:18:04,216][03333] Num frames 6300...
796
+ [2023-07-30 00:18:04,338][03333] Num frames 6400...
797
+ [2023-07-30 00:18:04,464][03333] Num frames 6500...
798
+ [2023-07-30 00:18:04,590][03333] Num frames 6600...
799
+ [2023-07-30 00:18:04,720][03333] Num frames 6700...
800
+ [2023-07-30 00:18:04,881][03333] Avg episode rewards: #0: 28.478, true rewards: #0: 11.312
801
+ [2023-07-30 00:18:04,882][03333] Avg episode reward: 28.478, avg true_objective: 11.312
802
+ [2023-07-30 00:18:04,900][03333] Num frames 6800...
803
+ [2023-07-30 00:18:05,020][03333] Num frames 6900...
804
+ [2023-07-30 00:18:05,141][03333] Num frames 7000...
805
+ [2023-07-30 00:18:05,263][03333] Num frames 7100...
806
+ [2023-07-30 00:18:05,384][03333] Num frames 7200...
807
+ [2023-07-30 00:18:05,506][03333] Num frames 7300...
808
+ [2023-07-30 00:18:05,632][03333] Num frames 7400...
809
+ [2023-07-30 00:18:05,758][03333] Num frames 7500...
810
+ [2023-07-30 00:18:05,882][03333] Num frames 7600...
811
+ [2023-07-30 00:18:06,002][03333] Num frames 7700...
812
+ [2023-07-30 00:18:06,123][03333] Num frames 7800...
813
+ [2023-07-30 00:18:06,244][03333] Num frames 7900...
814
+ [2023-07-30 00:18:06,365][03333] Num frames 8000...
815
+ [2023-07-30 00:18:06,491][03333] Num frames 8100...
816
+ [2023-07-30 00:18:06,615][03333] Num frames 8200...
817
+ [2023-07-30 00:18:06,737][03333] Num frames 8300...
818
+ [2023-07-30 00:18:06,864][03333] Num frames 8400...
819
+ [2023-07-30 00:18:06,985][03333] Num frames 8500...
820
+ [2023-07-30 00:18:07,110][03333] Num frames 8600...
821
+ [2023-07-30 00:18:07,179][03333] Avg episode rewards: #0: 31.301, true rewards: #0: 12.301
822
+ [2023-07-30 00:18:07,180][03333] Avg episode reward: 31.301, avg true_objective: 12.301
823
+ [2023-07-30 00:18:07,292][03333] Num frames 8700...
824
+ [2023-07-30 00:18:07,417][03333] Num frames 8800...
825
+ [2023-07-30 00:18:07,554][03333] Avg episode rewards: #0: 27.708, true rewards: #0: 11.084
826
+ [2023-07-30 00:18:07,555][03333] Avg episode reward: 27.708, avg true_objective: 11.084
827
+ [2023-07-30 00:18:07,598][03333] Num frames 8900...
828
+ [2023-07-30 00:18:07,723][03333] Num frames 9000...
829
+ [2023-07-30 00:18:07,844][03333] Num frames 9100...
830
+ [2023-07-30 00:18:07,965][03333] Num frames 9200...
831
+ [2023-07-30 00:18:08,094][03333] Num frames 9300...
832
+ [2023-07-30 00:18:08,220][03333] Num frames 9400...
833
+ [2023-07-30 00:18:08,349][03333] Num frames 9500...
834
+ [2023-07-30 00:18:08,476][03333] Num frames 9600...
835
+ [2023-07-30 00:18:08,600][03333] Num frames 9700...
836
+ [2023-07-30 00:18:08,729][03333] Num frames 9800...
837
+ [2023-07-30 00:18:08,856][03333] Num frames 9900...
838
+ [2023-07-30 00:18:08,983][03333] Num frames 10000...
839
+ [2023-07-30 00:18:09,110][03333] Num frames 10100...
840
+ [2023-07-30 00:18:09,237][03333] Num frames 10200...
841
+ [2023-07-30 00:18:09,363][03333] Num frames 10300...
842
+ [2023-07-30 00:18:09,491][03333] Num frames 10400...
843
+ [2023-07-30 00:18:09,618][03333] Num frames 10500...
844
+ [2023-07-30 00:18:09,750][03333] Num frames 10600...
845
+ [2023-07-30 00:18:09,884][03333] Avg episode rewards: #0: 29.621, true rewards: #0: 11.843
846
+ [2023-07-30 00:18:09,886][03333] Avg episode reward: 29.621, avg true_objective: 11.843
847
+ [2023-07-30 00:18:09,941][03333] Num frames 10700...
848
+ [2023-07-30 00:18:10,070][03333] Num frames 10800...
849
+ [2023-07-30 00:18:10,199][03333] Num frames 10900...
850
+ [2023-07-30 00:18:10,326][03333] Num frames 11000...
851
+ [2023-07-30 00:18:10,453][03333] Num frames 11100...
852
+ [2023-07-30 00:18:10,579][03333] Num frames 11200...
853
+ [2023-07-30 00:18:10,705][03333] Num frames 11300...
854
+ [2023-07-30 00:18:10,838][03333] Num frames 11400...
855
+ [2023-07-30 00:18:10,962][03333] Num frames 11500...
856
+ [2023-07-30 00:18:11,084][03333] Num frames 11600...
857
+ [2023-07-30 00:18:11,204][03333] Num frames 11700...
858
+ [2023-07-30 00:18:11,331][03333] Num frames 11800...
859
+ [2023-07-30 00:18:11,455][03333] Num frames 11900...
860
+ [2023-07-30 00:18:11,585][03333] Num frames 12000...
861
+ [2023-07-30 00:18:11,712][03333] Num frames 12100...
862
+ [2023-07-30 00:18:11,837][03333] Num frames 12200...
863
+ [2023-07-30 00:18:11,960][03333] Num frames 12300...
864
+ [2023-07-30 00:18:12,086][03333] Num frames 12400...
865
+ [2023-07-30 00:18:12,210][03333] Num frames 12500...
866
+ [2023-07-30 00:18:12,336][03333] Num frames 12600...
867
+ [2023-07-30 00:18:12,462][03333] Num frames 12700...
868
+ [2023-07-30 00:18:12,590][03333] Avg episode rewards: #0: 32.159, true rewards: #0: 12.759
869
+ [2023-07-30 00:18:12,592][03333] Avg episode reward: 32.159, avg true_objective: 12.759
870
+ [2023-07-30 00:18:42,692][03333] Replay video saved to /content/train_dir/default_experiment/replay.mp4!