timm
/

Image Classification
timm
PyTorch
Safetensors
Transformers
File size: 5,058 Bytes
1144268
225b077
 
1144268
 
 
505e5f9
1144268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
license: apache-2.0
library_name: timm
tags:
- image-classification
- timm
- transformers
---
# Model card for cspdarknet53.ra_in1k

A CSP-DarkNet (Cross-Stage-Partial) image classification model. Trained on ImageNet-1k in `timm` using recipe template described below.

Recipe details:
 * RandAugment `RA` recipe. Inspired by and evolved from EfficientNet RandAugment recipes. Published as `B` recipe in [ResNet Strikes Back](https://arxiv.org/abs/2110.00476).
 * RMSProp (TF 1.0 behaviour) optimizer, EMA weight averaging
 * Step (exponential decay w/ staircase) LR schedule with warmup


## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
  - Params (M): 27.6
  - GMACs: 6.6
  - Activations (M): 16.8
  - Image size: 256 x 256
- **Papers:**
  - CSPNet: A New Backbone that can Enhance Learning Capability of CNN: https://arxiv.org/abs/1911.11929
  - YOLOv3: An Incremental Improvement: https://arxiv.org/abs/1804.02767
  - ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476
- **Original:** https://github.com/huggingface/pytorch-image-models

## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('cspdarknet53.ra_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```

### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'cspdarknet53.ra_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 32, 256, 256])
    #  torch.Size([1, 64, 128, 128])
    #  torch.Size([1, 128, 64, 64])
    #  torch.Size([1, 256, 32, 32])
    #  torch.Size([1, 512, 16, 16])
    #  torch.Size([1, 1024, 8, 8])

    print(o.shape)
```

### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'cspdarknet53.ra_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1024, 8, 8) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```

## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).

## Citation
```bibtex
@article{Wang2019CSPNetAN,
  title={CSPNet: A New Backbone that can Enhance Learning Capability of CNN},
  author={Chien-Yao Wang and Hong-Yuan Mark Liao and I-Hau Yeh and Yueh-Hua Wu and Ping-Yang Chen and Jun-Wei Hsieh},
  journal={2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)},
  year={2019},
  pages={1571-1580}
}
```
```bibtex
@article{Redmon2018YOLOv3AI,
  title={YOLOv3: An Incremental Improvement},
  author={Joseph Redmon and Ali Farhadi},
  journal={ArXiv},
  year={2018},
  volume={abs/1804.02767}
}
```
```bibtex
@inproceedings{wightman2021resnet,
  title={ResNet strikes back: An improved training procedure in timm},
  author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
  booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
}
```
```bibtex
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```