|
--- |
|
license: apache-2.0 |
|
library_name: timm |
|
tags: |
|
- image-classification |
|
- timm |
|
datasets: |
|
- imagenet-1k |
|
--- |
|
# Model card for efficientformerv2_s2.snap_dist_in1k |
|
|
|
A EfficientFormer-V2 image classification model. Pretrained with distillation on ImageNet-1k. |
|
|
|
## Model Details |
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 12.7 |
|
- GMACs: 1.3 |
|
- Activations (M): 11.8 |
|
- Image size: 224 x 224 |
|
- **Original:** https://github.com/snap-research/EfficientFormer |
|
- **Papers:** |
|
- Rethinking Vision Transformers for MobileNet Size and Speed: https://arxiv.org/abs/2212.08059 |
|
- **Dataset:** ImageNet-1k |
|
|
|
## Model Usage |
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open( |
|
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) |
|
|
|
model = timm.create_model('efficientformerv2_s2.snap_dist_in1k', pretrained=True) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open( |
|
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) |
|
|
|
model = timm.create_model( |
|
'efficientformerv2_s2.snap_dist_in1k', |
|
pretrained=True, |
|
num_classes=0, # remove classifier nn.Linear |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
|
|
# or equivalently (without needing to set num_classes=0) |
|
|
|
output = model.forward_features(transforms(img).unsqueeze(0)) |
|
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor |
|
|
|
output = model.forward_head(output, pre_logits=True) |
|
# output is (batch_size, num_features) tensor |
|
``` |
|
|
|
### Feature Map Extraction |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open( |
|
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) |
|
|
|
model = timm.create_model( |
|
'efficientformerv2_s2.snap_dist_in1k', |
|
pretrained=True, |
|
features_only=True, |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
for o in output: |
|
# print shape of each feature map in output |
|
# e.g. for efficientformerv2_l: |
|
# torch.Size([2, 40, 56, 56]) |
|
# torch.Size([2, 80, 28, 28]) |
|
# torch.Size([2, 192, 14, 14]) |
|
# torch.Size([2, 384, 7, 7]) |
|
print(o.shape) |
|
``` |
|
|
|
## Model Comparison |
|
|model |top1 |top5 |param_count|img_size| |
|
|-----------------------------------|------|------|-----------|--------| |
|
|efficientformerv2_l.snap_dist_in1k |83.628|96.54 |26.32 |224 | |
|
|efficientformer_l7.snap_dist_in1k |83.368|96.534|82.23 |224 | |
|
|efficientformer_l3.snap_dist_in1k |82.572|96.24 |31.41 |224 | |
|
|efficientformerv2_s2.snap_dist_in1k|82.128|95.902|12.71 |224 | |
|
|efficientformer_l1.snap_dist_in1k |80.496|94.984|12.29 |224 | |
|
|efficientformerv2_s1.snap_dist_in1k|79.698|94.698|6.19 |224 | |
|
|efficientformerv2_s0.snap_dist_in1k|76.026|92.77 |3.6 |224 | |
|
|
|
## Citation |
|
```bibtex |
|
@article{li2022rethinking, |
|
title={Rethinking Vision Transformers for MobileNet Size and Speed}, |
|
author={Li, Yanyu and Hu, Ju and Wen, Yang and Evangelidis, Georgios and Salahi, Kamyar and Wang, Yanzhi and Tulyakov, Sergey and Ren, Jian}, |
|
journal={arXiv preprint arXiv:2212.08059}, |
|
year={2022} |
|
} |
|
``` |
|
```bibtex |
|
@misc{rw2019timm, |
|
author = {Ross Wightman}, |
|
title = {PyTorch Image Models}, |
|
year = {2019}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
doi = {10.5281/zenodo.4414861}, |
|
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} |
|
} |
|
``` |
|
|