timm
/

Image Classification
timm
PyTorch
Safetensors
Transformers
File size: 7,630 Bytes
9a61627
 
 
 
689b157
9a61627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
tags:
- image-classification
- timm
- transformers
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
- imagenet-12k
---
# Model card for mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k

A MambaOut image classification model with `timm` specific architecture customizations. Pretrained on ImageNet-12k and fine-tuned on ImageNet-1k by Ross Wightman using Swin / ConvNeXt based recipe.


## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
  - Params (M): 101.7
  - GMACs: 56.4
  - Activations (M): 132.7
  - Image size: 384 x 384
- **Pretrain Dataset:** ImageNet-12k
- **Dataset:** ImageNet-1k
- **Papers:**
  - PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
  - MambaOut: Do We Really Need Mamba for Vision?: https://arxiv.org/abs/2405.07992
- **Original:** https://github.com/yuweihao/MambaOut

## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```

### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 96, 96, 128])
    #  torch.Size([1, 48, 48, 256])
    #  torch.Size([1, 24, 24, 512])
    #  torch.Size([1, 12, 12, 768])

    print(o.shape)
```

### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 12, 12, 768) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```

## Model Comparison
### By Top-1

|model                                                                                                                |img_size|top1  |top5  |param_count|
|---------------------------------------------------------------------------------------------------------------------|--------|------|------|-----------|
|[mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k)|384     |87.506|98.428|101.66     |
|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|288     |86.912|98.236|101.66     |
|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|224     |86.632|98.156|101.66     |
|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k)                  |288     |84.974|97.332|86.48      |
|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k)                  |288     |84.962|97.208|94.45      |
|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k)                |288     |84.832|97.27 |88.83      |
|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k)                                                  |288     |84.72 |96.93 |84.81      |
|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k)                          |288     |84.598|97.098|48.5       |
|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k)                                                |288     |84.5  |96.974|48.49      |
|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k)                  |224     |84.454|96.864|94.45      |
|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k)                  |224     |84.434|96.958|86.48      |
|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k)                |224     |84.362|96.952|88.83      |
|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k)                                                  |224     |84.168|96.68 |84.81      |
|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k)                                                |224     |84.086|96.63 |48.49      |
|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k)                          |224     |84.024|96.752|48.5       |
|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k)                                                  |288     |83.448|96.538|26.55      |
|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k)                                                  |224     |82.736|96.1  |26.55      |
|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k)                                                  |288     |81.054|95.718|9.14       |
|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k)                                                  |224     |79.986|94.986|9.14       |
|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k)                                                |288     |79.848|95.14 |7.3        |
|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k)                                                |224     |78.87 |94.408|7.3        |

## Citation
```bibtex
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```
```bibtex
@article{yu2024mambaout,
  title={MambaOut: Do We Really Need Mamba for Vision?},
  author={Yu, Weihao and Wang, Xinchao},
  journal={arXiv preprint arXiv:2405.07992},
  year={2024}
}
```