--- license: apache-2.0 library_name: timm tags: - image-classification - timm - transformers datasets: - imagenet-1k - imagenet-22k --- # Model card for mvitv2_large_cls.fb_inw21k A MViT-v2 (multi-scale ViT) image classification model. Pretrained on ImageNet-22k (Winter21 variant) and fine-tuned on ImageNet-1k by paper authors. The classifier layout for this model was not shared and does not match expected lexicographical sorted synset order. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 234.6 - GMACs: 42.2 - Activations (M): 111.7 - Image size: 224 x 224 - **Papers:** - MViTv2: Improved Multiscale Vision Transformers for Classification and Detection: https://arxiv.org/abs/2112.01526 - **Dataset:** ImageNet-1k - **Pretrain Dataset:** ImageNet-22k - **Original:** https://github.com/facebookresearch/mvit ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mvitv2_large_cls.fb_inw21k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mvitv2_large_cls.fb_inw21k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 50, 1152) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ```