--- tags: - image-classification - timm library_tag: timm license: apache-2.0 datasets: - imagenet-1k - imagenet-12k --- # Model card for rexnetr_200.sw_in12k_ft_in1k A ReXNet-R image classification model. The R variant of the architecture is `timm` specific and rounds channels (modulus 8 or 16) to prevent performance issues w/ NVIDIA Tensor Cores. Pretrained on ImageNet-12k and fine-tuned on ImageNet-1k by Ross Wightman in `timm`. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 16.5 - GMACs: 1.6 - Activations (M): 15.1 - Image size: train = 224 x 224, test = 288 x 288 - **Papers:** - Rethinking Channel Dimensions for Efficient Model Design: https://arxiv.org/abs/2007.00992 - **Original:** https://github.com/huggingface/pytorch-image-models - **Dataset:** ImageNet-1k - **Pretrain Dataset:** ImageNet-12k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('rexnetr_200.sw_in12k_ft_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'rexnetr_200.sw_in12k_ft_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 32, 112, 112]) # torch.Size([1, 80, 56, 56]) # torch.Size([1, 120, 28, 28]) # torch.Size([1, 256, 14, 14]) # torch.Size([1, 368, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'rexnetr_200.sw_in12k_ft_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2560, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results)." |model |top1 |top5 |param_count|img_size|crop_pct| |-------------------------|------|------|-----------|--------|--------| |rexnetr_300.sw_in12k_ft_in1k|84.53 |97.252|34.81 |288 |1.0 | |rexnetr_200.sw_in12k_ft_in1k|83.164|96.648|16.52 |288 |1.0 | |rexnet_300.nav_in1k |82.772|96.232|34.71 |224 |0.875 | |rexnet_200.nav_in1k |81.652|95.668|16.37 |224 |0.875 | |rexnet_150.nav_in1k |80.308|95.174|9.73 |224 |0.875 | |rexnet_130.nav_in1k |79.478|94.68 |7.56 |224 |0.875 | |rexnet_100.nav_in1k |77.832|93.886|4.8 |224 |0.875 | ## Citation ```bibtex @misc{han2021rethinking, title={Rethinking Channel Dimensions for Efficient Model Design}, author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo}, year={2021}, eprint={2007.00992}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```