timotewos commited on
Commit
94e01c6
1 Parent(s): b5f9298

End of training

Browse files
Files changed (1) hide show
  1. README.md +24 -12
README.md CHANGED
@@ -11,8 +11,8 @@ model-index:
11
  - name: wav2vec2-large-xls-r-300m-amharic-demo-colab
12
  results:
13
  - task:
14
- type: automatic-speech-recognition
15
  name: Automatic Speech Recognition
 
16
  dataset:
17
  name: common_voice_16_1
18
  type: common_voice_16_1
@@ -20,21 +20,21 @@ model-index:
20
  split: test
21
  args: am
22
  metrics:
23
- - type: wer
24
- value: 1.0006671114076051
25
- name: Wer
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
  should probably proofread and complete it, then remove this comment. -->
30
 
31
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mechal-timotewos-budapest-university-of-technology-and-e/huggingface/runs/nrphjnei)
32
  # wav2vec2-large-xls-r-300m-amharic-demo-colab
33
 
34
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_16_1 dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 3.9728
37
- - Wer: 1.0007
38
 
39
  ## Model description
40
 
@@ -62,17 +62,29 @@ The following hyperparameters were used during training:
62
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_steps: 100
65
- - num_epochs: 20
66
  - mixed_precision_training: Native AMP
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Wer |
71
  |:-------------:|:-----:|:----:|:---------------:|:------:|
72
- | 12.5906 | 5.0 | 100 | 4.1542 | 1.0 |
73
- | 4.1313 | 10.0 | 200 | 4.0748 | 1.0 |
74
- | 4.025 | 15.0 | 300 | 3.9942 | 1.0 |
75
- | 3.9704 | 20.0 | 400 | 3.9728 | 1.0007 |
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
 
78
  ### Framework versions
 
11
  - name: wav2vec2-large-xls-r-300m-amharic-demo-colab
12
  results:
13
  - task:
 
14
  name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
  dataset:
17
  name: common_voice_16_1
18
  type: common_voice_16_1
 
20
  split: test
21
  args: am
22
  metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.9159439626417611
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
  should probably proofread and complete it, then remove this comment. -->
30
 
31
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mechal-timotewos-budapest-university-of-technology-and-e/huggingface/runs/1shn3s8w)
32
  # wav2vec2-large-xls-r-300m-amharic-demo-colab
33
 
34
  This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_16_1 dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 2.0166
37
+ - Wer: 0.9159
38
 
39
  ## Model description
40
 
 
62
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_steps: 100
65
+ - num_epochs: 80
66
  - mixed_precision_training: Native AMP
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Wer |
71
  |:-------------:|:-----:|:----:|:---------------:|:------:|
72
+ | 12.6278 | 5.0 | 100 | 4.1583 | 1.0 |
73
+ | 4.0971 | 10.0 | 200 | 4.0317 | 1.0 |
74
+ | 3.9986 | 15.0 | 300 | 3.9758 | 1.0 |
75
+ | 3.7669 | 20.0 | 400 | 3.2290 | 1.0287 |
76
+ | 1.6097 | 25.0 | 500 | 1.8216 | 0.9860 |
77
+ | 0.5931 | 30.0 | 600 | 1.7982 | 0.9780 |
78
+ | 0.3501 | 35.0 | 700 | 1.9234 | 0.9867 |
79
+ | 0.2629 | 40.0 | 800 | 1.9051 | 0.9206 |
80
+ | 0.2055 | 45.0 | 900 | 1.9681 | 0.9246 |
81
+ | 0.1844 | 50.0 | 1000 | 2.0111 | 0.9393 |
82
+ | 0.1625 | 55.0 | 1100 | 2.0117 | 0.9286 |
83
+ | 0.1486 | 60.0 | 1200 | 2.0144 | 0.9326 |
84
+ | 0.1348 | 65.0 | 1300 | 2.0011 | 0.9373 |
85
+ | 0.1183 | 70.0 | 1400 | 2.0303 | 0.9053 |
86
+ | 0.1095 | 75.0 | 1500 | 2.0183 | 0.9239 |
87
+ | 0.1064 | 80.0 | 1600 | 2.0166 | 0.9159 |
88
 
89
 
90
  ### Framework versions