--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_16_1 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-amharic-demo-colab results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_16_1 type: common_voice_16_1 config: am split: test args: am metrics: - type: wer value: 1.0006671114076051 name: Wer --- [Visualize in Weights & Biases](https://wandb.ai/mechal-timotewos-budapest-university-of-technology-and-e/huggingface/runs/nrphjnei) # wav2vec2-large-xls-r-300m-amharic-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 3.9728 - Wer: 1.0007 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.5906 | 5.0 | 100 | 4.1542 | 1.0 | | 4.1313 | 10.0 | 200 | 4.0748 | 1.0 | | 4.025 | 15.0 | 300 | 3.9942 | 1.0 | | 3.9704 | 20.0 | 400 | 3.9728 | 1.0007 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1