timtaotao commited on
Commit
6b85145
·
1 Parent(s): fd3d6cd

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1169.55 +/- 79.71
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36bbdde398fd3975aa110482dd617fe5c6a3e02319a048e8397d6e104e7d1159
3
+ size 129256
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f51408b0c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f51408b0ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f51408b0d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f51408b0dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f51408b0e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f51408b0ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f51408b0f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f51408b4040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f51408b40d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f51408b4160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f51408b41f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f51408b4280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f51408ac870>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675237989331895605,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD7b2r08hDQ/2/DyPflbtj9I5Rg/x88ZP2uuOj4n9bi+AnB0vgfGOT9gtVS/LFYTPAlJxz4k0SA/y8ZhPnkLZD8YkZI9lz/5vZtOIz9Azni+IroKPi1pLb/gmoQ+jmrsPsR+dr8NDhE/D7mjPuaPKD9eUhs/VcdLPRhaDj8sr/q/7i0DP//p7T4bxo+/gHkevyWl9j7fu74/FCEjPuZrGj+ORdw/+0ocP5MzSz8OR5Y8KIKoP1pSBj66R4G/J52AP0kLhT+5NZJAH68SQGltlr+H74Q/DQ4RP58kSMDmjyg/e0YjvuWnLz8soAw+WHjGPe98Fj8ZqTE/O5QOPkGB975FVys+tkYsP6sgVb9p41y7+5SzvjEQaj8QmOI9aJUTvvktmT59Xko/oZsmP3A15zwSTRM/tQD1PPJW8D7YsrA9xH52vw0OET8PuaM+5o8oP0qnNj9PrK8/5vZ2v3+PmT9XRKQ/ds+IwCiA4b7MaU6/tcOgv19TAz/4ba0/4VdRQM38oD9InLq/uzE4P35IoT4Ex64/Esa3vCeXPL+Ev9Y+lvmWP3+eQEBn6EM/YR+NwMR+dr8NDhE/D7mjPq5lwr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAALhrK0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAn2mMvQAAAACP9wDAAAAAALVThT0AAAAApc3hPwAAAABPWgC+AAAAACZ83z8AAAAAMFOkPAAAAABdmADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAohSCNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBQpqLwAAAAAMYnkvwAAAAC5iPk8AAAAACgb7T8AAAAAupxAPQAAAABAUt4/AAAAAIWXk70AAAAAesnivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9lvrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBKI3U9AAAAAK4Y678AAAAAjQoCPgAAAADAtvg/AAAAABS4e70AAAAAYPXzPwAAAACq6409AAAAACVM278AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADL3ze2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGtUCvgAAAAAECvO/AAAAAKgyRr0AAAAAOSn7PwAAAAA7ARK+AAAAAEqp9T8AAAAA6DVYPQAAAAAKvPy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJF7tMmF8G+MAWyUTegDjAF0lEdApk5YuXeFc3V9lChoBkdAk7ZbmyPdVWgHTegDaAhHQKZT0v9tMwl1fZQoaAZHQJGyKQhfShJoB03oA2gIR0CmWDzreIl/dX2UKGgGR0CQg0Uy57PZaAdN6ANoCEdAplkiqjrRjXV9lChoBkdAj/R4oJAt4GgHTegDaAhHQKZaAMhouf51fZQoaAZHQJLK67iADq5oB03oA2gIR0CmX3YZl4C7dX2UKGgGR0CR++sIVuaXaAdN6ANoCEdApmP4U8FINHV9lChoBkdAkV1/8dgfEGgHTegDaAhHQKZk17N0NjN1fZQoaAZHQJBp6ciGFi9oB03oA2gIR0CmZbaPKdQPdX2UKGgGR0CQ0HwY+B6KaAdN6ANoCEdApmsWrGR3eXV9lChoBkdAir35EMLF42gHTegDaAhHQKZvjaMaS9x1fZQoaAZHQJC9Ltb9qDdoB03oA2gIR0CmcGsiKR+0dX2UKGgGR0CPKuPNFBppaAdN6ANoCEdApnFM5hjOLXV9lChoBkdAkEjSU5dWyWgHTegDaAhHQKZ2sOBDohZ1fZQoaAZHQJItYL+glGBoB03oA2gIR0Cme1Jhvze5dX2UKGgGR0CRUV0MPSUkaAdN6ANoCEdApnw7s0HhTHV9lChoBkdAiQ+VOj7AL2gHTegDaAhHQKZ9IF6iTMd1fZQoaAZHQIYd9+5OJtVoB03oA2gIR0Cmgot2C/XYdX2UKGgGR0CQpMn+AEt/aAdN6ANoCEdApob8BbOeKHV9lChoBkdAjbXVcD8tPGgHTegDaAhHQKaH3s3Q2Mt1fZQoaAZHQJOpo7+1jRVoB03oA2gIR0CmiMF2vB8AdX2UKGgGR0COlDbItDlYaAdN6ANoCEdApo4VoUSIxnV9lChoBkdAkcerY9Pk72gHTegDaAhHQKaSiSEDhcZ1fZQoaAZHQIkEMBGQSzxoB03oA2gIR0Cmk2yB06o3dX2UKGgGR0CNm4Fpwjt5aAdN6ANoCEdAppRS5iExqXV9lChoBkdAizk2VmjCYWgHTegDaAhHQKaZs0waisZ1fZQoaAZHQJIDA5eZ5RloB03oA2gIR0CmnikjX4CZdX2UKGgGR0CSh0eD3/PxaAdN6ANoCEdApp8HEGZ/kXV9lChoBkdAke8YPGyX2WgHTegDaAhHQKaf6QWepXJ1fZQoaAZHQEmTftx+8XhoB0vWaAhHQKahgqpcX3x1fZQoaAZHQItjOMuOCGxoB03oA2gIR0CmpVgQYk3TdX2UKGgGR0CRdZ05EMLGaAdN6ANoCEdApqnDojfNzXV9lChoBkdAjg7s/6frbGgHTegDaAhHQKarjINEw351fZQoaAZHQJEcPqu8sc1oB03oA2gIR0CmrSumixmkdX2UKGgGR0CIcI86mwaBaAdN6ANoCEdAprD0Lx7RfHV9lChoBkdAjQfIVEd/8WgHTegDaAhHQKa1dmJWNm11fZQoaAZHQI/QAiX6ZYxoB03oA2gIR0Cmt0VMEidKdX2UKGgGR0CQl/C9ytFKaAdN6ANoCEdAprjmuRs/IXV9lChoBkdAkL1nLaEi+2gHTegDaAhHQKa8uRB/qgR1fZQoaAZHQJQqNVQyhzxoB03oA2gIR0CmwUJ4rz5HdX2UKGgGR0CVnNmyxA0LaAdN6ANoCEdApsMNVrAP/nV9lChoBkdAlfoebI91U2gHTegDaAhHQKbErbZezD51fZQoaAZHQJSE4lt0mt1oB03oA2gIR0CmyIgAyVOcdX2UKGgGR0CShuZGax5caAdN6ANoCEdAps0H2Cdz4nV9lChoBkdAlRsGQKa5PWgHTegDaAhHQKbOxxuKoAJ1fZQoaAZHQJR2pYr8R+VoB03oA2gIR0Cm0F4SHuZ1dX2UKGgGR0CUirD7qIJraAdN6ANoCEdAptQW3z+WGHV9lChoBkdAkPPeCGvfTGgHTegDaAhHQKbYj5JK8L91fZQoaAZHQJLNi+De0oloB03oA2gIR0Cm2lMO5J9RdX2UKGgGR0CRygkhA4XGaAdN6ANoCEdAptwC7btZ3nV9lChoBkdAkwLDBhx5s2gHTegDaAhHQKbfzcD8tPJ1fZQoaAZHQJGrZOpKjBVoB03oA2gIR0Cm5DUtqYZ3dX2UKGgGR0CTVc0/GEPEaAdN6ANoCEdApuX/RE4NqnV9lChoBkdAkjzYjv/ipGgHTegDaAhHQKbnm2cawUx1fZQoaAZHQJFaID1XeWRoB03oA2gIR0Cm62bF85S4dX2UKGgGR0CSRL0bcXWOaAdN6ANoCEdApu/YcWCVbHV9lChoBkdAkHELIDHOr2gHTegDaAhHQKbxmeSSvDB1fZQoaAZHQJEx9I+W4VhoB03oA2gIR0Cm8z0xdpqRdX2UKGgGR0CSzLQYDTz/aAdN6ANoCEdApvcN4iX6ZnV9lChoBkdAkzCY+B6KL2gHTegDaAhHQKb7jqAz5451fZQoaAZHQJPTbwkPcztoB03oA2gIR0Cm/VBCMPz4dX2UKGgGR0CST9gm7aqTaAdN6ANoCEdApv7c9ZA6dXV9lChoBkdAkVhO6unuRmgHTegDaAhHQKcCqWLP2PF1fZQoaAZHQJFsYUVSGahoB03oA2gIR0CnB9NCzC1rdX2UKGgGR0CQjWZzxPO6aAdN6ANoCEdApwprULDyfHV9lChoBkdAkIZRnJ1aGGgHTegDaAhHQKcM715B1Ld1fZQoaAZHQJFP1jAi3XtoB03oA2gIR0CnEXycTakAdX2UKGgGR0CRP9DXe3x4aAdN6ANoCEdApxXotYjjaXV9lChoBkdAkQkzuOS4fGgHTegDaAhHQKcXplMAWBV1fZQoaAZHQJDDKCNCJGhoB03oA2gIR0CnGTwyAQQMdX2UKGgGR0CReSiJfpljaAdN6ANoCEdApxz2jh1klXV9lChoBkdAkEb+psGgSWgHTegDaAhHQKchWOYplSV1fZQoaAZHQJGovsByS3doB03oA2gIR0CnIygnUlRhdX2UKGgGR0CST+TgVGkOaAdN6ANoCEdApyTE1wYLs3V9lChoBkdAk0qTFId2gWgHTegDaAhHQKcog+sYEW91fZQoaAZHQJDzww22oehoB03oA2gIR0CnLOvzFuNxdX2UKGgGR8BC6QVCXyAhaAdLi2gIR0CnLoiswL3LdX2UKGgGR0CSwt6jWTX8aAdN6ANoCEdApy6utjkMkXV9lChoBkdAkujn+2mYSmgHTegDaAhHQKcwd1gYxcp1fZQoaAZHQJDsfyjHn2ZoB03oA2gIR0CnNFcKXv6TdX2UKGgGR0CSo1GGVRk3aAdN6ANoCEdApzpx79hqkHV9lChoBkdAkd112q1gIGgHTegDaAhHQKc6nMjeKsN1fZQoaAZHQJN1SFdszl9oB03oA2gIR0CnPDnWrfcfdX2UKGgGR0CS40tmcvugaAdN6ANoCEdAp0AE3AEdNnV9lChoBkdAkpp3JPqLTGgHTegDaAhHQKdGKjSG8Ep1fZQoaAZHQJHK/Lq2SdRoB03oA2gIR0CnRlEzO5avdX2UKGgGR0CPpjDTjNpuaAdN6ANoCEdAp0fpWNm16XV9lChoBkdAiw8Xsw+MZWgHTegDaAhHQKdLrbvgFX91fZQoaAZHQJJTK6kIomZoB03oA2gIR0CnUeL2xptadX2UKGgGR0CSwHR51Ng0aAdN6ANoCEdAp1IOCmMwUXV9lChoBkdAkgm2ACnxa2gHTegDaAhHQKdTyon8baR1fZQoaAZHQJLxcNEw35xoB03oA2gIR0CnV9MPrfLtdX2UKGgGR0CQr+URnOB2aAdN6ANoCEdAp1459RaX8nV9lChoBkdAkZLOEmICVGgHTegDaAhHQKdeZWVeKKp1fZQoaAZHQJICzMjeKsNoB03oA2gIR0CnYBojGDL9dX2UKGgGR0CS8RTOxB3SaAdN6ANoCEdAp2QijUNKAnV9lChoBkdAjf2zcqOLi2gHTegDaAhHQKdqiwqy4Wl1fZQoaAZHQJK61oysS01oB03oA2gIR0CnarSeyzHCdX2UKGgGR0CTiOGLk0aZaAdN6ANoCEdAp2x4CnxaxHV9lChoBkdAjUKE9t/FzmgHTegDaAhHQKdwfTF2mpF1ZS4="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2613a79b05d9fdc4f8e4a7ef4b585c2fa949ec66c46401d49e69175e707e59de
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c507d4214febed2e18c845c2c4eb34b6af688fecd63f06416c549030af2ed29d
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f51408b0c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f51408b0ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f51408b0d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f51408b0dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f51408b0e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f51408b0ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f51408b0f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f51408b4040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f51408b40d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f51408b4160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f51408b41f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f51408b4280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f51408ac870>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675237989331895605, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD7b2r08hDQ/2/DyPflbtj9I5Rg/x88ZP2uuOj4n9bi+AnB0vgfGOT9gtVS/LFYTPAlJxz4k0SA/y8ZhPnkLZD8YkZI9lz/5vZtOIz9Azni+IroKPi1pLb/gmoQ+jmrsPsR+dr8NDhE/D7mjPuaPKD9eUhs/VcdLPRhaDj8sr/q/7i0DP//p7T4bxo+/gHkevyWl9j7fu74/FCEjPuZrGj+ORdw/+0ocP5MzSz8OR5Y8KIKoP1pSBj66R4G/J52AP0kLhT+5NZJAH68SQGltlr+H74Q/DQ4RP58kSMDmjyg/e0YjvuWnLz8soAw+WHjGPe98Fj8ZqTE/O5QOPkGB975FVys+tkYsP6sgVb9p41y7+5SzvjEQaj8QmOI9aJUTvvktmT59Xko/oZsmP3A15zwSTRM/tQD1PPJW8D7YsrA9xH52vw0OET8PuaM+5o8oP0qnNj9PrK8/5vZ2v3+PmT9XRKQ/ds+IwCiA4b7MaU6/tcOgv19TAz/4ba0/4VdRQM38oD9InLq/uzE4P35IoT4Ex64/Esa3vCeXPL+Ev9Y+lvmWP3+eQEBn6EM/YR+NwMR+dr8NDhE/D7mjPq5lwr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAALhrK0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAn2mMvQAAAACP9wDAAAAAALVThT0AAAAApc3hPwAAAABPWgC+AAAAACZ83z8AAAAAMFOkPAAAAABdmADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAohSCNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBQpqLwAAAAAMYnkvwAAAAC5iPk8AAAAACgb7T8AAAAAupxAPQAAAABAUt4/AAAAAIWXk70AAAAAesnivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9lvrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBKI3U9AAAAAK4Y678AAAAAjQoCPgAAAADAtvg/AAAAABS4e70AAAAAYPXzPwAAAACq6409AAAAACVM278AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADL3ze2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGtUCvgAAAAAECvO/AAAAAKgyRr0AAAAAOSn7PwAAAAA7ARK+AAAAAEqp9T8AAAAA6DVYPQAAAAAKvPy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJF7tMmF8G+MAWyUTegDjAF0lEdApk5YuXeFc3V9lChoBkdAk7ZbmyPdVWgHTegDaAhHQKZT0v9tMwl1fZQoaAZHQJGyKQhfShJoB03oA2gIR0CmWDzreIl/dX2UKGgGR0CQg0Uy57PZaAdN6ANoCEdAplkiqjrRjXV9lChoBkdAj/R4oJAt4GgHTegDaAhHQKZaAMhouf51fZQoaAZHQJLK67iADq5oB03oA2gIR0CmX3YZl4C7dX2UKGgGR0CR++sIVuaXaAdN6ANoCEdApmP4U8FINHV9lChoBkdAkV1/8dgfEGgHTegDaAhHQKZk17N0NjN1fZQoaAZHQJBp6ciGFi9oB03oA2gIR0CmZbaPKdQPdX2UKGgGR0CQ0HwY+B6KaAdN6ANoCEdApmsWrGR3eXV9lChoBkdAir35EMLF42gHTegDaAhHQKZvjaMaS9x1fZQoaAZHQJC9Ltb9qDdoB03oA2gIR0CmcGsiKR+0dX2UKGgGR0CPKuPNFBppaAdN6ANoCEdApnFM5hjOLXV9lChoBkdAkEjSU5dWyWgHTegDaAhHQKZ2sOBDohZ1fZQoaAZHQJItYL+glGBoB03oA2gIR0Cme1Jhvze5dX2UKGgGR0CRUV0MPSUkaAdN6ANoCEdApnw7s0HhTHV9lChoBkdAiQ+VOj7AL2gHTegDaAhHQKZ9IF6iTMd1fZQoaAZHQIYd9+5OJtVoB03oA2gIR0Cmgot2C/XYdX2UKGgGR0CQpMn+AEt/aAdN6ANoCEdApob8BbOeKHV9lChoBkdAjbXVcD8tPGgHTegDaAhHQKaH3s3Q2Mt1fZQoaAZHQJOpo7+1jRVoB03oA2gIR0CmiMF2vB8AdX2UKGgGR0COlDbItDlYaAdN6ANoCEdApo4VoUSIxnV9lChoBkdAkcerY9Pk72gHTegDaAhHQKaSiSEDhcZ1fZQoaAZHQIkEMBGQSzxoB03oA2gIR0Cmk2yB06o3dX2UKGgGR0CNm4Fpwjt5aAdN6ANoCEdAppRS5iExqXV9lChoBkdAizk2VmjCYWgHTegDaAhHQKaZs0waisZ1fZQoaAZHQJIDA5eZ5RloB03oA2gIR0CmnikjX4CZdX2UKGgGR0CSh0eD3/PxaAdN6ANoCEdApp8HEGZ/kXV9lChoBkdAke8YPGyX2WgHTegDaAhHQKaf6QWepXJ1fZQoaAZHQEmTftx+8XhoB0vWaAhHQKahgqpcX3x1fZQoaAZHQItjOMuOCGxoB03oA2gIR0CmpVgQYk3TdX2UKGgGR0CRdZ05EMLGaAdN6ANoCEdApqnDojfNzXV9lChoBkdAjg7s/6frbGgHTegDaAhHQKarjINEw351fZQoaAZHQJEcPqu8sc1oB03oA2gIR0CmrSumixmkdX2UKGgGR0CIcI86mwaBaAdN6ANoCEdAprD0Lx7RfHV9lChoBkdAjQfIVEd/8WgHTegDaAhHQKa1dmJWNm11fZQoaAZHQI/QAiX6ZYxoB03oA2gIR0Cmt0VMEidKdX2UKGgGR0CQl/C9ytFKaAdN6ANoCEdAprjmuRs/IXV9lChoBkdAkL1nLaEi+2gHTegDaAhHQKa8uRB/qgR1fZQoaAZHQJQqNVQyhzxoB03oA2gIR0CmwUJ4rz5HdX2UKGgGR0CVnNmyxA0LaAdN6ANoCEdApsMNVrAP/nV9lChoBkdAlfoebI91U2gHTegDaAhHQKbErbZezD51fZQoaAZHQJSE4lt0mt1oB03oA2gIR0CmyIgAyVOcdX2UKGgGR0CShuZGax5caAdN6ANoCEdAps0H2Cdz4nV9lChoBkdAlRsGQKa5PWgHTegDaAhHQKbOxxuKoAJ1fZQoaAZHQJR2pYr8R+VoB03oA2gIR0Cm0F4SHuZ1dX2UKGgGR0CUirD7qIJraAdN6ANoCEdAptQW3z+WGHV9lChoBkdAkPPeCGvfTGgHTegDaAhHQKbYj5JK8L91fZQoaAZHQJLNi+De0oloB03oA2gIR0Cm2lMO5J9RdX2UKGgGR0CRygkhA4XGaAdN6ANoCEdAptwC7btZ3nV9lChoBkdAkwLDBhx5s2gHTegDaAhHQKbfzcD8tPJ1fZQoaAZHQJGrZOpKjBVoB03oA2gIR0Cm5DUtqYZ3dX2UKGgGR0CTVc0/GEPEaAdN6ANoCEdApuX/RE4NqnV9lChoBkdAkjzYjv/ipGgHTegDaAhHQKbnm2cawUx1fZQoaAZHQJFaID1XeWRoB03oA2gIR0Cm62bF85S4dX2UKGgGR0CSRL0bcXWOaAdN6ANoCEdApu/YcWCVbHV9lChoBkdAkHELIDHOr2gHTegDaAhHQKbxmeSSvDB1fZQoaAZHQJEx9I+W4VhoB03oA2gIR0Cm8z0xdpqRdX2UKGgGR0CSzLQYDTz/aAdN6ANoCEdApvcN4iX6ZnV9lChoBkdAkzCY+B6KL2gHTegDaAhHQKb7jqAz5451fZQoaAZHQJPTbwkPcztoB03oA2gIR0Cm/VBCMPz4dX2UKGgGR0CST9gm7aqTaAdN6ANoCEdApv7c9ZA6dXV9lChoBkdAkVhO6unuRmgHTegDaAhHQKcCqWLP2PF1fZQoaAZHQJFsYUVSGahoB03oA2gIR0CnB9NCzC1rdX2UKGgGR0CQjWZzxPO6aAdN6ANoCEdApwprULDyfHV9lChoBkdAkIZRnJ1aGGgHTegDaAhHQKcM715B1Ld1fZQoaAZHQJFP1jAi3XtoB03oA2gIR0CnEXycTakAdX2UKGgGR0CRP9DXe3x4aAdN6ANoCEdApxXotYjjaXV9lChoBkdAkQkzuOS4fGgHTegDaAhHQKcXplMAWBV1fZQoaAZHQJDDKCNCJGhoB03oA2gIR0CnGTwyAQQMdX2UKGgGR0CReSiJfpljaAdN6ANoCEdApxz2jh1klXV9lChoBkdAkEb+psGgSWgHTegDaAhHQKchWOYplSV1fZQoaAZHQJGovsByS3doB03oA2gIR0CnIygnUlRhdX2UKGgGR0CST+TgVGkOaAdN6ANoCEdApyTE1wYLs3V9lChoBkdAk0qTFId2gWgHTegDaAhHQKcog+sYEW91fZQoaAZHQJDzww22oehoB03oA2gIR0CnLOvzFuNxdX2UKGgGR8BC6QVCXyAhaAdLi2gIR0CnLoiswL3LdX2UKGgGR0CSwt6jWTX8aAdN6ANoCEdApy6utjkMkXV9lChoBkdAkujn+2mYSmgHTegDaAhHQKcwd1gYxcp1fZQoaAZHQJDsfyjHn2ZoB03oA2gIR0CnNFcKXv6TdX2UKGgGR0CSo1GGVRk3aAdN6ANoCEdApzpx79hqkHV9lChoBkdAkd112q1gIGgHTegDaAhHQKc6nMjeKsN1fZQoaAZHQJN1SFdszl9oB03oA2gIR0CnPDnWrfcfdX2UKGgGR0CS40tmcvugaAdN6ANoCEdAp0AE3AEdNnV9lChoBkdAkpp3JPqLTGgHTegDaAhHQKdGKjSG8Ep1fZQoaAZHQJHK/Lq2SdRoB03oA2gIR0CnRlEzO5avdX2UKGgGR0CPpjDTjNpuaAdN6ANoCEdAp0fpWNm16XV9lChoBkdAiw8Xsw+MZWgHTegDaAhHQKdLrbvgFX91fZQoaAZHQJJTK6kIomZoB03oA2gIR0CnUeL2xptadX2UKGgGR0CSwHR51Ng0aAdN6ANoCEdAp1IOCmMwUXV9lChoBkdAkgm2ACnxa2gHTegDaAhHQKdTyon8baR1fZQoaAZHQJLxcNEw35xoB03oA2gIR0CnV9MPrfLtdX2UKGgGR0CQr+URnOB2aAdN6ANoCEdAp1459RaX8nV9lChoBkdAkZLOEmICVGgHTegDaAhHQKdeZWVeKKp1fZQoaAZHQJICzMjeKsNoB03oA2gIR0CnYBojGDL9dX2UKGgGR0CS8RTOxB3SaAdN6ANoCEdAp2QijUNKAnV9lChoBkdAjf2zcqOLi2gHTegDaAhHQKdqiwqy4Wl1fZQoaAZHQJK61oysS01oB03oA2gIR0CnarSeyzHCdX2UKGgGR0CTiOGLk0aZaAdN6ANoCEdAp2x4CnxaxHV9lChoBkdAjUKE9t/FzmgHTegDaAhHQKdwfTF2mpF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70ad2b4906526a66d9dfda7a0779f7148f0a2ee6a32d968348734c95ff5d8718
3
+ size 1007822
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1169.5521271679725, "std_reward": 79.70846668870405, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-01T08:44:52.341819"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57e48e31bf908a5bf0e7ea9d16233d9c8db73cbd3e43e42f91e0b8df191e14fd
3
+ size 2136