timtaotao commited on
Commit
a37eaab
·
1 Parent(s): 36a29e3

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.05 +/- 1.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64c5d2fc5a7d23c9c01386aca0e64f759146c83a27d43b4f2daac6cc4660d3f6
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f51408b43a0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f51408acb10>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675241290055719470,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjLq6PiOoE71+HBE/jLq6PiOoE71+HBE/jLq6PiOoE71+HBE/jLq6PiOoE71+HBE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaardvtjuSj84Z6w/Hzlgv3GVuD/Evgc/8NxPP5C9Fb/FScM/vg/YP2F61r/iz0C/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACMuro+I6gTvX4cET+M+c67D/NKu/Cie7yMuro+I6gTvX4cET+M+c67D/NKu/Cie7yMuro+I6gTvX4cET+M+c67D/NKu/Cie7yMuro+I6gTvX4cET+M+c67D/NKu/Cie7yUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.3647045 -0.03604902 0.566841 ]\n [ 0.3647045 -0.03604902 0.566841 ]\n [ 0.3647045 -0.03604902 0.566841 ]\n [ 0.3647045 -0.03604902 0.566841 ]]",
60
+ "desired_goal": "[[-0.43294075 0.79270697 1.3469 ]\n [-0.8758716 1.4420606 0.5302546 ]\n [ 0.811965 -0.58492374 1.5256888 ]\n [ 1.6879804 -1.6756097 -0.75317204]]",
61
+ "observation": "[[ 0.3647045 -0.03604902 0.566841 -0.00631637 -0.00309676 -0.01535867]\n [ 0.3647045 -0.03604902 0.566841 -0.00631637 -0.00309676 -0.01535867]\n [ 0.3647045 -0.03604902 0.566841 -0.00631637 -0.00309676 -0.01535867]\n [ 0.3647045 -0.03604902 0.566841 -0.00631637 -0.00309676 -0.01535867]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKzQXvt9Gh73srmI8AdF2PY+kuj3IVGk+ZjjAPa8AAD54P0k+i7SbvF2PEL7ogK88lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.14765994 -0.06605314 0.01383565]\n [ 0.06025792 0.09113418 0.22786248]\n [ 0.09385757 0.12500261 0.19653118]\n [-0.01900699 -0.14117189 0.02142377]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIl8eakUGuA8CUhpRSlIwBbJRLMowBdJRHQKKMmtRNyo51fZQoaAZoCWgPQwgllL4Qch4BwJSGlFKUaBVLMmgWR0CijGECvHLidX2UKGgGaAloD0MIApoIG55eBsCUhpRSlGgVSzJoFkdAoowlYQrc03V9lChoBmgJaA9DCAQCnUmbag3AlIaUUpRoFUsyaBZHQKKL6XKKYRd1fZQoaAZoCWgPQwgf8parH6sZwJSGlFKUaBVLMmgWR0CijYORLbpNdX2UKGgGaAloD0MI8yA9RQ7xBsCUhpRSlGgVSzJoFkdAoo1KBy0a63V9lChoBmgJaA9DCBbfUPhsPQLAlIaUUpRoFUsyaBZHQKKNDm/WUbF1fZQoaAZoCWgPQwgjopi8AbYSwJSGlFKUaBVLMmgWR0CijNJ0fYBedX2UKGgGaAloD0MIrdug9ls7BMCUhpRSlGgVSzJoFkdAoo5oSamXPnV9lChoBmgJaA9DCFq6gm3EkwDAlIaUUpRoFUsyaBZHQKKOLnOjZct1fZQoaAZoCWgPQwiR0QFJ2HcQwJSGlFKUaBVLMmgWR0CijfLIPsiTdX2UKGgGaAloD0MIw2Fp4Ed1B8CUhpRSlGgVSzJoFkdAoo222G7Bf3V9lChoBmgJaA9DCNV6v9GO2/m/lIaUUpRoFUsyaBZHQKKPSsA/9pB1fZQoaAZoCWgPQwggDafMzVcDwJSGlFKUaBVLMmgWR0CijxD3VTaTdX2UKGgGaAloD0MIVu9wOzQs9L+UhpRSlGgVSzJoFkdAoo7VRWLgoHV9lChoBmgJaA9DCLHh6ZWyzBjAlIaUUpRoFUsyaBZHQKKOmUr08Nh1fZQoaAZoCWgPQwjd0mpI3KMOwJSGlFKUaBVLMmgWR0CikDWoFV1fdX2UKGgGaAloD0MIiJ0pdF6DE8CUhpRSlGgVSzJoFkdAoo/74Hoou3V9lChoBmgJaA9DCOjB3Vm7jQLAlIaUUpRoFUsyaBZHQKKPwD5j6N51fZQoaAZoCWgPQwgLe9rhr8n3v5SGlFKUaBVLMmgWR0Cij4RFRYRvdX2UKGgGaAloD0MIcEBLV7DNAMCUhpRSlGgVSzJoFkdAopEcO5J9RnV9lChoBmgJaA9DCKRv0jQo2v2/lIaUUpRoFUsyaBZHQKKQ4q5sj3V1fZQoaAZoCWgPQwi1pKMczCb7v5SGlFKUaBVLMmgWR0CikKcD0UXYdX2UKGgGaAloD0MIOSuiJvr897+UhpRSlGgVSzJoFkdAopBrFXJYDHV9lChoBmgJaA9DCPcEie3uQfm/lIaUUpRoFUsyaBZHQKKSCHKwIMV1fZQoaAZoCWgPQwiVC5V/LS8DwJSGlFKUaBVLMmgWR0Cikc67/XGwdX2UKGgGaAloD0MIvady2lPyB8CUhpRSlGgVSzJoFkdAopGTIgeRxXV9lChoBmgJaA9DCDhlbr4RHQHAlIaUUpRoFUsyaBZHQKKRV2IO6NF1fZQoaAZoCWgPQwhWYwlrY2ztv5SGlFKUaBVLMmgWR0Ciku8k+otMdX2UKGgGaAloD0MIYVCm0eTi+r+UhpRSlGgVSzJoFkdAopK1XxOLznV9lChoBmgJaA9DCMKlY84zthPAlIaUUpRoFUsyaBZHQKKSeaCL/CJ1fZQoaAZoCWgPQwiGBIwubw7wv5SGlFKUaBVLMmgWR0Cikj2tMfzSdX2UKGgGaAloD0MI4V0u4juRA8CUhpRSlGgVSzJoFkdAopPRJbt7bHV9lChoBmgJaA9DCDqvsUtUL/C/lIaUUpRoFUsyaBZHQKKTl19ORDF1fZQoaAZoCWgPQwh0fLQ4Y9j7v5SGlFKUaBVLMmgWR0Cik1vKdQO4dX2UKGgGaAloD0MI+oBAZ9ImFcCUhpRSlGgVSzJoFkdAopMf+GXXy3V9lChoBmgJaA9DCGEaho+IKfS/lIaUUpRoFUsyaBZHQKKUvP1tfol1fZQoaAZoCWgPQwjQ8dHijGEDwJSGlFKUaBVLMmgWR0CilIM1sLv1dX2UKGgGaAloD0MIMzSeCOJsEMCUhpRSlGgVSzJoFkdAopRHkT6BRXV9lChoBmgJaA9DCAA2IEJceQvAlIaUUpRoFUsyaBZHQKKUC6cRUWF1fZQoaAZoCWgPQwhnZJC7CHMBwJSGlFKUaBVLMmgWR0CilbBXbM5fdX2UKGgGaAloD0MIaAjHLHtyA8CUhpRSlGgVSzJoFkdAopV2o73fynV9lChoBmgJaA9DCMBBe/Xx0ADAlIaUUpRoFUsyaBZHQKKVOxFAmiR1fZQoaAZoCWgPQwibApmdRW/2v5SGlFKUaBVLMmgWR0CilP8s189fdX2UKGgGaAloD0MIAmISLuRxFcCUhpRSlGgVSzJoFkdAopaYYDTz/nV9lChoBmgJaA9DCCWzeofbofa/lIaUUpRoFUsyaBZHQKKWXnuAqd91fZQoaAZoCWgPQwhr8L4qF6oDwJSGlFKUaBVLMmgWR0CiliLPD50sdX2UKGgGaAloD0MIKljjbDqC+r+UhpRSlGgVSzJoFkdAopXmzByjpXV9lChoBmgJaA9DCPyO4bGfRQLAlIaUUpRoFUsyaBZHQKKXdViF0xN1fZQoaAZoCWgPQwhUyQBQxU34v5SGlFKUaBVLMmgWR0CilzuU2UB5dX2UKGgGaAloD0MIdeYeEr53B8CUhpRSlGgVSzJoFkdAopb/13+uNnV9lChoBmgJaA9DCEypS8YxsgPAlIaUUpRoFUsyaBZHQKKWw85jpcJ1fZQoaAZoCWgPQwgR4PQu3k/9v5SGlFKUaBVLMmgWR0CimF/QSi/PdX2UKGgGaAloD0MI+Z0mM96W/r+UhpRSlGgVSzJoFkdAopgl8Z1mrnV9lChoBmgJaA9DCAfSxaaVQgTAlIaUUpRoFUsyaBZHQKKX6ju8brF1fZQoaAZoCWgPQwj+DG/W4F0CwJSGlFKUaBVLMmgWR0Cil65hScbzdX2UKGgGaAloD0MIKgExCReSBMCUhpRSlGgVSzJoFkdAoplAOMERrnV9lChoBmgJaA9DCPP/qiNHOv2/lIaUUpRoFUsyaBZHQKKZBoHs1Kp1fZQoaAZoCWgPQwguck9Xd4wFwJSGlFKUaBVLMmgWR0CimMrEcbR4dX2UKGgGaAloD0MIREyJJHoZ97+UhpRSlGgVSzJoFkdAopiO/etSynV9lChoBmgJaA9DCEcdHVcj+/G/lIaUUpRoFUsyaBZHQKKaKoo/iYN1fZQoaAZoCWgPQwgL7gc8MEANwJSGlFKUaBVLMmgWR0CimfDkELYxdX2UKGgGaAloD0MITWn9LQGYAMCUhpRSlGgVSzJoFkdAopm1bmlqJ3V9lChoBmgJaA9DCNrjhXR4yATAlIaUUpRoFUsyaBZHQKKZeWqtHQR1fZQoaAZoCWgPQwikjLgANGoFwJSGlFKUaBVLMmgWR0CimwgCW/rTdX2UKGgGaAloD0MINUBpqFFI+L+UhpRSlGgVSzJoFkdAoprOe4Cp33V9lChoBmgJaA9DCOD1mbM+ZQbAlIaUUpRoFUsyaBZHQKKaksqaw2V1fZQoaAZoCWgPQwjpt68D56wPwJSGlFKUaBVLMmgWR0CimlbhNucddX2UKGgGaAloD0MIzCiWW1rtF8CUhpRSlGgVSzJoFkdAopvowblzVHV9lChoBmgJaA9DCEp87gT7LwPAlIaUUpRoFUsyaBZHQKKbru/Dcdp1fZQoaAZoCWgPQwhStkjajX76v5SGlFKUaBVLMmgWR0Cim3MsQNCrdX2UKGgGaAloD0MIhqxu9Zw08b+UhpRSlGgVSzJoFkdAops3LDAJs3V9lChoBmgJaA9DCGouNxjq8Py/lIaUUpRoFUsyaBZHQKKc6rBj4Hp1fZQoaAZoCWgPQwiIEcKjjSP8v5SGlFKUaBVLMmgWR0CinLFjmSyMdX2UKGgGaAloD0MIGsHG9e9aBcCUhpRSlGgVSzJoFkdAopx1wBHTZ3V9lChoBmgJaA9DCFg6H54lSPS/lIaUUpRoFUsyaBZHQKKcOcFQl8h1fZQoaAZoCWgPQwjwEwfQ7/sLwJSGlFKUaBVLMmgWR0Cinc4M4LkTdX2UKGgGaAloD0MIL00R4PRu/r+UhpRSlGgVSzJoFkdAop2UJ6Y3N3V9lChoBmgJaA9DCPsgy4KJ/xLAlIaUUpRoFUsyaBZHQKKdWKTB68h1fZQoaAZoCWgPQwjcf2Q6dIoQwJSGlFKUaBVLMmgWR0CinRy5y2hJdX2UKGgGaAloD0MIV2DI6lbvAMCUhpRSlGgVSzJoFkdAop6vbsWweXV9lChoBmgJaA9DCIG0/wHWKgbAlIaUUpRoFUsyaBZHQKKedaUzKtB1fZQoaAZoCWgPQwgpJQSr6gUSwJSGlFKUaBVLMmgWR0CinjncDbJwdX2UKGgGaAloD0MIF5zB3y8GAsCUhpRSlGgVSzJoFkdAop399hJAdHV9lChoBmgJaA9DCE6c3O9QlAHAlIaUUpRoFUsyaBZHQKKfh/6O5rh1fZQoaAZoCWgPQwgAxjNo6B8KwJSGlFKUaBVLMmgWR0Cin04TsY2sdX2UKGgGaAloD0MIlUbM7PMIF8CUhpRSlGgVSzJoFkdAop8SUiY9gXV9lChoBmgJaA9DCHbicrwCMQ3AlIaUUpRoFUsyaBZHQKKe1kCFK051fZQoaAZoCWgPQwg/qfbpeAz9v5SGlFKUaBVLMmgWR0CioG5UDMePdX2UKGgGaAloD0MIl65gG/Ek/b+UhpRSlGgVSzJoFkdAoqA0eOn2qXV9lChoBmgJaA9DCOHQWzy85/e/lIaUUpRoFUsyaBZHQKKf+NGViWp1fZQoaAZoCWgPQwiQEVDhCDIGwJSGlFKUaBVLMmgWR0Cin7zV2A5JdX2UKGgGaAloD0MIxFxStd0kC8CUhpRSlGgVSzJoFkdAoqFgyRB/qnV9lChoBmgJaA9DCEyo4PCCyAjAlIaUUpRoFUsyaBZHQKKhJxlQMx51fZQoaAZoCWgPQwj1vYbguEz2v5SGlFKUaBVLMmgWR0CioOt5t3wDdX2UKGgGaAloD0MIqiwKuyhaBsCUhpRSlGgVSzJoFkdAoqCveWOZLXV9lChoBmgJaA9DCA/xD1t6tALAlIaUUpRoFUsyaBZHQKKiXPYWcjJ1fZQoaAZoCWgPQwiuRQvQtloGwJSGlFKUaBVLMmgWR0CioiMxoIv8dX2UKGgGaAloD0MIIxEawca18r+UhpRSlGgVSzJoFkdAoqHncSGrS3V9lChoBmgJaA9DCBw/VBoxM/W/lIaUUpRoFUsyaBZHQKKhq2y9mHx1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e50812a2d4d95b6851c9630d47bdafa12a48a3d1963b5f7b7376e679913cdce3
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da93c3defb823ba613a00e9813e111c7b3ee00616375bc00a9e6010f1eeef280
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f51408b43a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f51408acb10>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675241290055719470, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjLq6PiOoE71+HBE/jLq6PiOoE71+HBE/jLq6PiOoE71+HBE/jLq6PiOoE71+HBE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaardvtjuSj84Z6w/Hzlgv3GVuD/Evgc/8NxPP5C9Fb/FScM/vg/YP2F61r/iz0C/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACMuro+I6gTvX4cET+M+c67D/NKu/Cie7yMuro+I6gTvX4cET+M+c67D/NKu/Cie7yMuro+I6gTvX4cET+M+c67D/NKu/Cie7yMuro+I6gTvX4cET+M+c67D/NKu/Cie7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3647045 -0.03604902 0.566841 ]\n [ 0.3647045 -0.03604902 0.566841 ]\n [ 0.3647045 -0.03604902 0.566841 ]\n [ 0.3647045 -0.03604902 0.566841 ]]", "desired_goal": "[[-0.43294075 0.79270697 1.3469 ]\n [-0.8758716 1.4420606 0.5302546 ]\n [ 0.811965 -0.58492374 1.5256888 ]\n [ 1.6879804 -1.6756097 -0.75317204]]", "observation": "[[ 0.3647045 -0.03604902 0.566841 -0.00631637 -0.00309676 -0.01535867]\n [ 0.3647045 -0.03604902 0.566841 -0.00631637 -0.00309676 -0.01535867]\n [ 0.3647045 -0.03604902 0.566841 -0.00631637 -0.00309676 -0.01535867]\n [ 0.3647045 -0.03604902 0.566841 -0.00631637 -0.00309676 -0.01535867]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKzQXvt9Gh73srmI8AdF2PY+kuj3IVGk+ZjjAPa8AAD54P0k+i7SbvF2PEL7ogK88lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14765994 -0.06605314 0.01383565]\n [ 0.06025792 0.09113418 0.22786248]\n [ 0.09385757 0.12500261 0.19653118]\n [-0.01900699 -0.14117189 0.02142377]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIl8eakUGuA8CUhpRSlIwBbJRLMowBdJRHQKKMmtRNyo51fZQoaAZoCWgPQwgllL4Qch4BwJSGlFKUaBVLMmgWR0CijGECvHLidX2UKGgGaAloD0MIApoIG55eBsCUhpRSlGgVSzJoFkdAoowlYQrc03V9lChoBmgJaA9DCAQCnUmbag3AlIaUUpRoFUsyaBZHQKKL6XKKYRd1fZQoaAZoCWgPQwgf8parH6sZwJSGlFKUaBVLMmgWR0CijYORLbpNdX2UKGgGaAloD0MI8yA9RQ7xBsCUhpRSlGgVSzJoFkdAoo1KBy0a63V9lChoBmgJaA9DCBbfUPhsPQLAlIaUUpRoFUsyaBZHQKKNDm/WUbF1fZQoaAZoCWgPQwgjopi8AbYSwJSGlFKUaBVLMmgWR0CijNJ0fYBedX2UKGgGaAloD0MIrdug9ls7BMCUhpRSlGgVSzJoFkdAoo5oSamXPnV9lChoBmgJaA9DCFq6gm3EkwDAlIaUUpRoFUsyaBZHQKKOLnOjZct1fZQoaAZoCWgPQwiR0QFJ2HcQwJSGlFKUaBVLMmgWR0CijfLIPsiTdX2UKGgGaAloD0MIw2Fp4Ed1B8CUhpRSlGgVSzJoFkdAoo222G7Bf3V9lChoBmgJaA9DCNV6v9GO2/m/lIaUUpRoFUsyaBZHQKKPSsA/9pB1fZQoaAZoCWgPQwggDafMzVcDwJSGlFKUaBVLMmgWR0CijxD3VTaTdX2UKGgGaAloD0MIVu9wOzQs9L+UhpRSlGgVSzJoFkdAoo7VRWLgoHV9lChoBmgJaA9DCLHh6ZWyzBjAlIaUUpRoFUsyaBZHQKKOmUr08Nh1fZQoaAZoCWgPQwjd0mpI3KMOwJSGlFKUaBVLMmgWR0CikDWoFV1fdX2UKGgGaAloD0MIiJ0pdF6DE8CUhpRSlGgVSzJoFkdAoo/74Hoou3V9lChoBmgJaA9DCOjB3Vm7jQLAlIaUUpRoFUsyaBZHQKKPwD5j6N51fZQoaAZoCWgPQwgLe9rhr8n3v5SGlFKUaBVLMmgWR0Cij4RFRYRvdX2UKGgGaAloD0MIcEBLV7DNAMCUhpRSlGgVSzJoFkdAopEcO5J9RnV9lChoBmgJaA9DCKRv0jQo2v2/lIaUUpRoFUsyaBZHQKKQ4q5sj3V1fZQoaAZoCWgPQwi1pKMczCb7v5SGlFKUaBVLMmgWR0CikKcD0UXYdX2UKGgGaAloD0MIOSuiJvr897+UhpRSlGgVSzJoFkdAopBrFXJYDHV9lChoBmgJaA9DCPcEie3uQfm/lIaUUpRoFUsyaBZHQKKSCHKwIMV1fZQoaAZoCWgPQwiVC5V/LS8DwJSGlFKUaBVLMmgWR0Cikc67/XGwdX2UKGgGaAloD0MIvady2lPyB8CUhpRSlGgVSzJoFkdAopGTIgeRxXV9lChoBmgJaA9DCDhlbr4RHQHAlIaUUpRoFUsyaBZHQKKRV2IO6NF1fZQoaAZoCWgPQwhWYwlrY2ztv5SGlFKUaBVLMmgWR0Ciku8k+otMdX2UKGgGaAloD0MIYVCm0eTi+r+UhpRSlGgVSzJoFkdAopK1XxOLznV9lChoBmgJaA9DCMKlY84zthPAlIaUUpRoFUsyaBZHQKKSeaCL/CJ1fZQoaAZoCWgPQwiGBIwubw7wv5SGlFKUaBVLMmgWR0Cikj2tMfzSdX2UKGgGaAloD0MI4V0u4juRA8CUhpRSlGgVSzJoFkdAopPRJbt7bHV9lChoBmgJaA9DCDqvsUtUL/C/lIaUUpRoFUsyaBZHQKKTl19ORDF1fZQoaAZoCWgPQwh0fLQ4Y9j7v5SGlFKUaBVLMmgWR0Cik1vKdQO4dX2UKGgGaAloD0MI+oBAZ9ImFcCUhpRSlGgVSzJoFkdAopMf+GXXy3V9lChoBmgJaA9DCGEaho+IKfS/lIaUUpRoFUsyaBZHQKKUvP1tfol1fZQoaAZoCWgPQwjQ8dHijGEDwJSGlFKUaBVLMmgWR0CilIM1sLv1dX2UKGgGaAloD0MIMzSeCOJsEMCUhpRSlGgVSzJoFkdAopRHkT6BRXV9lChoBmgJaA9DCAA2IEJceQvAlIaUUpRoFUsyaBZHQKKUC6cRUWF1fZQoaAZoCWgPQwhnZJC7CHMBwJSGlFKUaBVLMmgWR0CilbBXbM5fdX2UKGgGaAloD0MIaAjHLHtyA8CUhpRSlGgVSzJoFkdAopV2o73fynV9lChoBmgJaA9DCMBBe/Xx0ADAlIaUUpRoFUsyaBZHQKKVOxFAmiR1fZQoaAZoCWgPQwibApmdRW/2v5SGlFKUaBVLMmgWR0CilP8s189fdX2UKGgGaAloD0MIAmISLuRxFcCUhpRSlGgVSzJoFkdAopaYYDTz/nV9lChoBmgJaA9DCCWzeofbofa/lIaUUpRoFUsyaBZHQKKWXnuAqd91fZQoaAZoCWgPQwhr8L4qF6oDwJSGlFKUaBVLMmgWR0CiliLPD50sdX2UKGgGaAloD0MIKljjbDqC+r+UhpRSlGgVSzJoFkdAopXmzByjpXV9lChoBmgJaA9DCPyO4bGfRQLAlIaUUpRoFUsyaBZHQKKXdViF0xN1fZQoaAZoCWgPQwhUyQBQxU34v5SGlFKUaBVLMmgWR0CilzuU2UB5dX2UKGgGaAloD0MIdeYeEr53B8CUhpRSlGgVSzJoFkdAopb/13+uNnV9lChoBmgJaA9DCEypS8YxsgPAlIaUUpRoFUsyaBZHQKKWw85jpcJ1fZQoaAZoCWgPQwgR4PQu3k/9v5SGlFKUaBVLMmgWR0CimF/QSi/PdX2UKGgGaAloD0MI+Z0mM96W/r+UhpRSlGgVSzJoFkdAopgl8Z1mrnV9lChoBmgJaA9DCAfSxaaVQgTAlIaUUpRoFUsyaBZHQKKX6ju8brF1fZQoaAZoCWgPQwj+DG/W4F0CwJSGlFKUaBVLMmgWR0Cil65hScbzdX2UKGgGaAloD0MIKgExCReSBMCUhpRSlGgVSzJoFkdAoplAOMERrnV9lChoBmgJaA9DCPP/qiNHOv2/lIaUUpRoFUsyaBZHQKKZBoHs1Kp1fZQoaAZoCWgPQwguck9Xd4wFwJSGlFKUaBVLMmgWR0CimMrEcbR4dX2UKGgGaAloD0MIREyJJHoZ97+UhpRSlGgVSzJoFkdAopiO/etSynV9lChoBmgJaA9DCEcdHVcj+/G/lIaUUpRoFUsyaBZHQKKaKoo/iYN1fZQoaAZoCWgPQwgL7gc8MEANwJSGlFKUaBVLMmgWR0CimfDkELYxdX2UKGgGaAloD0MITWn9LQGYAMCUhpRSlGgVSzJoFkdAopm1bmlqJ3V9lChoBmgJaA9DCNrjhXR4yATAlIaUUpRoFUsyaBZHQKKZeWqtHQR1fZQoaAZoCWgPQwikjLgANGoFwJSGlFKUaBVLMmgWR0CimwgCW/rTdX2UKGgGaAloD0MINUBpqFFI+L+UhpRSlGgVSzJoFkdAoprOe4Cp33V9lChoBmgJaA9DCOD1mbM+ZQbAlIaUUpRoFUsyaBZHQKKaksqaw2V1fZQoaAZoCWgPQwjpt68D56wPwJSGlFKUaBVLMmgWR0CimlbhNucddX2UKGgGaAloD0MIzCiWW1rtF8CUhpRSlGgVSzJoFkdAopvowblzVHV9lChoBmgJaA9DCEp87gT7LwPAlIaUUpRoFUsyaBZHQKKbru/Dcdp1fZQoaAZoCWgPQwhStkjajX76v5SGlFKUaBVLMmgWR0Cim3MsQNCrdX2UKGgGaAloD0MIhqxu9Zw08b+UhpRSlGgVSzJoFkdAops3LDAJs3V9lChoBmgJaA9DCGouNxjq8Py/lIaUUpRoFUsyaBZHQKKc6rBj4Hp1fZQoaAZoCWgPQwiIEcKjjSP8v5SGlFKUaBVLMmgWR0CinLFjmSyMdX2UKGgGaAloD0MIGsHG9e9aBcCUhpRSlGgVSzJoFkdAopx1wBHTZ3V9lChoBmgJaA9DCFg6H54lSPS/lIaUUpRoFUsyaBZHQKKcOcFQl8h1fZQoaAZoCWgPQwjwEwfQ7/sLwJSGlFKUaBVLMmgWR0Cinc4M4LkTdX2UKGgGaAloD0MIL00R4PRu/r+UhpRSlGgVSzJoFkdAop2UJ6Y3N3V9lChoBmgJaA9DCPsgy4KJ/xLAlIaUUpRoFUsyaBZHQKKdWKTB68h1fZQoaAZoCWgPQwjcf2Q6dIoQwJSGlFKUaBVLMmgWR0CinRy5y2hJdX2UKGgGaAloD0MIV2DI6lbvAMCUhpRSlGgVSzJoFkdAop6vbsWweXV9lChoBmgJaA9DCIG0/wHWKgbAlIaUUpRoFUsyaBZHQKKedaUzKtB1fZQoaAZoCWgPQwgpJQSr6gUSwJSGlFKUaBVLMmgWR0CinjncDbJwdX2UKGgGaAloD0MIF5zB3y8GAsCUhpRSlGgVSzJoFkdAop399hJAdHV9lChoBmgJaA9DCE6c3O9QlAHAlIaUUpRoFUsyaBZHQKKfh/6O5rh1fZQoaAZoCWgPQwgAxjNo6B8KwJSGlFKUaBVLMmgWR0Cin04TsY2sdX2UKGgGaAloD0MIlUbM7PMIF8CUhpRSlGgVSzJoFkdAop8SUiY9gXV9lChoBmgJaA9DCHbicrwCMQ3AlIaUUpRoFUsyaBZHQKKe1kCFK051fZQoaAZoCWgPQwg/qfbpeAz9v5SGlFKUaBVLMmgWR0CioG5UDMePdX2UKGgGaAloD0MIl65gG/Ek/b+UhpRSlGgVSzJoFkdAoqA0eOn2qXV9lChoBmgJaA9DCOHQWzy85/e/lIaUUpRoFUsyaBZHQKKf+NGViWp1fZQoaAZoCWgPQwiQEVDhCDIGwJSGlFKUaBVLMmgWR0Cin7zV2A5JdX2UKGgGaAloD0MIxFxStd0kC8CUhpRSlGgVSzJoFkdAoqFgyRB/qnV9lChoBmgJaA9DCEyo4PCCyAjAlIaUUpRoFUsyaBZHQKKhJxlQMx51fZQoaAZoCWgPQwj1vYbguEz2v5SGlFKUaBVLMmgWR0CioOt5t3wDdX2UKGgGaAloD0MIqiwKuyhaBsCUhpRSlGgVSzJoFkdAoqCveWOZLXV9lChoBmgJaA9DCA/xD1t6tALAlIaUUpRoFUsyaBZHQKKiXPYWcjJ1fZQoaAZoCWgPQwiuRQvQtloGwJSGlFKUaBVLMmgWR0CioiMxoIv8dX2UKGgGaAloD0MIIxEawca18r+UhpRSlGgVSzJoFkdAoqHncSGrS3V9lChoBmgJaA9DCBw/VBoxM/W/lIaUUpRoFUsyaBZHQKKhq2y9mHx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (767 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.0517085350118576, "std_reward": 1.363429899451613, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-01T09:34:13.749548"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47862f201dbf4a3dcf6af75715efc50b97d102a3da6a587c245ab02b900d673d
3
+ size 3056