File size: 5,044 Bytes
7a2cf03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0eb939
7a2cf03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
  - text: Hello!
    example_title: Hello world
    group: Python
base_model:
- LiquidAI/LFM2-1.2B
---

This tiny model is for debugging. It is randomly initialized with the config adapted from [LiquidAI/LFM2-1.2B](https://huggingface.co/LiquidAI/LFM2-1.2B).

### Example usage:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load model and tokenizer
model_id = "tiny-random/lfm2"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype="bfloat16",
    trust_remote_code=True,
    #    attn_implementation="flash_attention_2" <- uncomment on compatible GPU
)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Generate answer
prompt = "What is C. elegans?"
input_ids = tokenizer.apply_chat_template(
    [{"role": "user", "content": prompt}],
    add_generation_prompt=True,
    return_tensors="pt",
    tokenize=True,
).to(model.device)

output = model.generate(
    input_ids,
    do_sample=True,
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_new_tokens=512,
)

print(tokenizer.decode(output[0], skip_special_tokens=False))
```

### Codes to create this repo:

```python
import json
from pathlib import Path

import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoProcessor,
    GenerationConfig,
    set_seed,
)

source_model_id = "LiquidAI/LFM2-1.2B"
save_folder = "/tmp/tiny-random/lfm2"

processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True)
processor.save_pretrained(save_folder)

with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
    config_json = json.load(f)
config_json['block_dim'] = 64
config_json['block_ff_dim'] = 128
config_json['full_attn_idxs'] = [1]
config_json['conv_dim'] = 64
config_json['conv_dim_out'] = 64
config_json['hidden_size'] = 64
config_json['intermediate_size'] = 128
config_json['num_attention_heads'] = 2
config_json['num_heads'] = 2
config_json['num_hidden_layers'] = 2
config_json['num_key_value_heads'] = 1
config_json['tie_word_embeddings'] = True
config_json['use_cache'] = True
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)

config = AutoConfig.from_pretrained(
    save_folder,
    trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
    model.generation_config = GenerationConfig.from_pretrained(
        source_model_id, trust_remote_code=True,
    )
set_seed(42)
model = model.cpu()  # cpu is more stable for random initialization across machines
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.2)
        print(name, p.shape)
model.save_pretrained(save_folder)
print(model)
```

### Printing the model:

```text
Lfm2ForCausalLM(
  (model): Lfm2Model(
    (embed_tokens): Embedding(65536, 64, padding_idx=0)
    (layers): ModuleList(
      (0): Lfm2DecoderLayer(
        (conv): Lfm2ShortConv(
          (conv): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), groups=64, bias=False)
          (in_proj): Linear(in_features=64, out_features=192, bias=False)
          (out_proj): Linear(in_features=64, out_features=64, bias=False)
        )
        (feed_forward): Lfm2MLP(
          (w1): Linear(in_features=64, out_features=256, bias=False)
          (w3): Linear(in_features=64, out_features=256, bias=False)
          (w2): Linear(in_features=256, out_features=64, bias=False)
        )
        (operator_norm): Lfm2RMSNorm((64,), eps=1e-05)
        (ffn_norm): Lfm2RMSNorm((64,), eps=1e-05)
      )
      (1): Lfm2DecoderLayer(
        (self_attn): Lfm2Attention(
          (q_proj): Linear(in_features=64, out_features=64, bias=False)
          (k_proj): Linear(in_features=64, out_features=32, bias=False)
          (v_proj): Linear(in_features=64, out_features=32, bias=False)
          (out_proj): Linear(in_features=64, out_features=64, bias=False)
          (q_layernorm): Lfm2RMSNorm((32,), eps=1e-05)
          (k_layernorm): Lfm2RMSNorm((32,), eps=1e-05)
        )
        (feed_forward): Lfm2MLP(
          (w1): Linear(in_features=64, out_features=256, bias=False)
          (w3): Linear(in_features=64, out_features=256, bias=False)
          (w2): Linear(in_features=256, out_features=64, bias=False)
        )
        (operator_norm): Lfm2RMSNorm((64,), eps=1e-05)
        (ffn_norm): Lfm2RMSNorm((64,), eps=1e-05)
      )
    )
    (rotary_emb): Lfm2RotaryEmbedding()
    (pos_emb): Lfm2RotaryEmbedding()
    (embedding_norm): Lfm2RMSNorm((64,), eps=1e-05)
  )
  (lm_head): Linear(in_features=64, out_features=65536, bias=False)
)
```