|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
base_model: |
|
- LiquidAI/LFM2-1.2B |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [LiquidAI/LFM2-1.2B](https://huggingface.co/LiquidAI/LFM2-1.2B). |
|
|
|
### Example usage: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Load model and tokenizer |
|
model_id = "tiny-random/lfm2" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype="bfloat16", |
|
trust_remote_code=True, |
|
# attn_implementation="flash_attention_2" <- uncomment on compatible GPU |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
# Generate answer |
|
prompt = "What is C. elegans?" |
|
input_ids = tokenizer.apply_chat_template( |
|
[{"role": "user", "content": prompt}], |
|
add_generation_prompt=True, |
|
return_tensors="pt", |
|
tokenize=True, |
|
).to(model.device) |
|
|
|
output = model.generate( |
|
input_ids, |
|
do_sample=True, |
|
temperature=0.3, |
|
min_p=0.15, |
|
repetition_penalty=1.05, |
|
max_new_tokens=512, |
|
) |
|
|
|
print(tokenizer.decode(output[0], skip_special_tokens=False)) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import json |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import torch |
|
from huggingface_hub import file_exists, hf_hub_download |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoProcessor, |
|
GenerationConfig, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "LiquidAI/LFM2-1.2B" |
|
save_folder = "/tmp/tiny-random/lfm2" |
|
|
|
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) |
|
processor.save_pretrained(save_folder) |
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
config_json['block_dim'] = 64 |
|
config_json['block_ff_dim'] = 128 |
|
config_json['full_attn_idxs'] = [1] |
|
config_json['conv_dim'] = 64 |
|
config_json['conv_dim_out'] = 64 |
|
config_json['hidden_size'] = 64 |
|
config_json['intermediate_size'] = 128 |
|
config_json['num_attention_heads'] = 2 |
|
config_json['num_heads'] = 2 |
|
config_json['num_hidden_layers'] = 2 |
|
config_json['num_key_value_heads'] = 1 |
|
config_json['tie_word_embeddings'] = True |
|
config_json['use_cache'] = True |
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
|
|
config = AutoConfig.from_pretrained( |
|
save_folder, |
|
trust_remote_code=True, |
|
) |
|
print(config) |
|
torch.set_default_dtype(torch.bfloat16) |
|
model = AutoModelForCausalLM.from_config(config) |
|
torch.set_default_dtype(torch.float32) |
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
model = model.cpu() # cpu is more stable for random initialization across machines |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.2) |
|
print(name, p.shape) |
|
model.save_pretrained(save_folder) |
|
print(model) |
|
``` |
|
|
|
### Printing the model: |
|
|
|
```text |
|
Lfm2ForCausalLM( |
|
(model): Lfm2Model( |
|
(embed_tokens): Embedding(65536, 64, padding_idx=0) |
|
(layers): ModuleList( |
|
(0): Lfm2DecoderLayer( |
|
(conv): Lfm2ShortConv( |
|
(conv): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(2,), groups=64, bias=False) |
|
(in_proj): Linear(in_features=64, out_features=192, bias=False) |
|
(out_proj): Linear(in_features=64, out_features=64, bias=False) |
|
) |
|
(feed_forward): Lfm2MLP( |
|
(w1): Linear(in_features=64, out_features=256, bias=False) |
|
(w3): Linear(in_features=64, out_features=256, bias=False) |
|
(w2): Linear(in_features=256, out_features=64, bias=False) |
|
) |
|
(operator_norm): Lfm2RMSNorm((64,), eps=1e-05) |
|
(ffn_norm): Lfm2RMSNorm((64,), eps=1e-05) |
|
) |
|
(1): Lfm2DecoderLayer( |
|
(self_attn): Lfm2Attention( |
|
(q_proj): Linear(in_features=64, out_features=64, bias=False) |
|
(k_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(v_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(out_proj): Linear(in_features=64, out_features=64, bias=False) |
|
(q_layernorm): Lfm2RMSNorm((32,), eps=1e-05) |
|
(k_layernorm): Lfm2RMSNorm((32,), eps=1e-05) |
|
) |
|
(feed_forward): Lfm2MLP( |
|
(w1): Linear(in_features=64, out_features=256, bias=False) |
|
(w3): Linear(in_features=64, out_features=256, bias=False) |
|
(w2): Linear(in_features=256, out_features=64, bias=False) |
|
) |
|
(operator_norm): Lfm2RMSNorm((64,), eps=1e-05) |
|
(ffn_norm): Lfm2RMSNorm((64,), eps=1e-05) |
|
) |
|
) |
|
(rotary_emb): Lfm2RotaryEmbedding() |
|
(pos_emb): Lfm2RotaryEmbedding() |
|
(embedding_norm): Lfm2RMSNorm((64,), eps=1e-05) |
|
) |
|
(lm_head): Linear(in_features=64, out_features=65536, bias=False) |
|
) |
|
``` |