File size: 5,632 Bytes
2f0a56e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809058a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f0a56e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809058a
 
 
2f0a56e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
  - text: Hello!
    example_title: Hello world
    group: Python
---

This tiny model is for debugging. It is randomly initialized with the config adapted from [MiniMaxAI/MiniMax-M1-80k](https://huggingface.co/MiniMaxAI/MiniMax-M1-80k).

### Example usage:

```python
import torch

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_id = "tiny-random/minimax-m1"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
)
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, trust_remote_code=True)
print(pipe('Write an article about Artificial Intelligence.'))
```

### Printing the model:

```text
MiniMaxM1ForCausalLM(
  (model): MiniMaxM1Model(
    (embed_tokens): Embedding(200064, 64)
    (layers): ModuleList(
      (0): MiniMaxM1DecoderLayer(
        (self_attn): MiniMaxM1LightningAttention(
          (out_proj): Linear(in_features=64, out_features=64, bias=False)
          (norm): MiniMaxM1RMSNorm()
          (qkv_proj): Linear(in_features=64, out_features=192, bias=False)
          (output_gate): Linear(in_features=64, out_features=64, bias=False)
        )
        (block_sparse_moe): MiniMaxM1SparseMoeBlock(
          (gate): Linear(in_features=64, out_features=8, bias=False)
          (experts): ModuleList(
            (0-7): 8 x MiniMaxM1BlockSparseTop2MLP(
              (w1): Linear(in_features=64, out_features=128, bias=False)
              (w2): Linear(in_features=128, out_features=64, bias=False)
              (w3): Linear(in_features=64, out_features=128, bias=False)
              (act_fn): SiLU()
            )
          )
        )
        (input_layernorm): MiniMaxM1RMSNorm()
        (post_attention_layernorm): MiniMaxM1RMSNorm()
      )
      (1): MiniMaxM1DecoderLayer(
        (self_attn): MiniMaxM1FlashAttention2(
          (q_proj): Linear(in_features=64, out_features=64, bias=False)
          (k_proj): Linear(in_features=64, out_features=32, bias=False)
          (v_proj): Linear(in_features=64, out_features=32, bias=False)
          (o_proj): Linear(in_features=64, out_features=64, bias=False)
          (rotary_emb): MiniMaxM1RotaryEmbedding()
        )
        (block_sparse_moe): MiniMaxM1SparseMoeBlock(
          (gate): Linear(in_features=64, out_features=8, bias=False)
          (experts): ModuleList(
            (0-7): 8 x MiniMaxM1BlockSparseTop2MLP(
              (w1): Linear(in_features=64, out_features=128, bias=False)
              (w2): Linear(in_features=128, out_features=64, bias=False)
              (w3): Linear(in_features=64, out_features=128, bias=False)
              (act_fn): SiLU()
            )
          )
        )
        (input_layernorm): MiniMaxM1RMSNorm()
        (post_attention_layernorm): MiniMaxM1RMSNorm()
      )
    )
    (norm): MiniMaxM1RMSNorm()
  )
  (lm_head): Linear(in_features=64, out_features=200064, bias=False)
)
```

### Codes to create this repo:

```python
import json
from pathlib import Path

import torch

import accelerate
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    set_seed,
)

source_model_id = "MiniMaxAI/MiniMax-M1-80k"
save_folder = "/tmp/tiny-random/minimax-m1"

processor = AutoTokenizer.from_pretrained(source_model_id)
processor.save_pretrained(save_folder)

with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
    config_json = json.load(f)

config_json["attn_type_list"] = [0, 1]  # one lightning, one attention
for k, v in config_json['auto_map'].items():
    config_json['auto_map'][k] = f'{source_model_id}--{v}'
config_json['head_dim'] = 32
config_json['hidden_size'] = 64
config_json['intermediate_size'] = 128
config_json['num_attention_heads'] = 2
config_json['num_experts_per_tok'] = 2
config_json['num_hidden_layers'] = 2
config_json['num_key_value_heads'] = 1
config_json['num_local_experts'] = 8
config_json['rotary_dim'] = 16
config_json['tie_word_embeddings'] = True

with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)

config = AutoConfig.from_pretrained(
    save_folder,
    trust_remote_code=True,
)
print(config)
automap = config_json['auto_map']
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)
# according to source model, gat is in FP32
for i in range(config.num_hidden_layers):
    model.model.layers[i].block_sparse_moe.gate.float()
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
    model.generation_config = GenerationConfig.from_pretrained(
        source_model_id, trust_remote_code=True,
    )
set_seed(42)
model = model.cpu()  # cpu is more stable for random initialization across machines
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.2)
        print(name, p.shape)
model.save_pretrained(save_folder)
print(model)
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f:
    config_json = json.load(f)
    config_json['auto_map'] = automap
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)
for python_file in Path(save_folder).glob('*.py'):
    python_file.unlink()
```