|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
base_model: |
|
- microsoft/Phi-4-mini-flash-reasoning |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [microsoft/Phi-4-mini-flash-reasoning](https://huggingface.co/microsoft/Phi-4-mini-flash-reasoning). |
|
|
|
### Example usage: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
torch.random.manual_seed(0) |
|
|
|
model_id = "tiny-random/phi-4-flash" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="cuda", |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
messages = [{ |
|
"role": "user", |
|
"content": "How to solve 3*x^2+4*x+5=1?" |
|
}] |
|
inputs = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_dict=True, |
|
return_tensors="pt", |
|
) |
|
|
|
outputs = model.generate( |
|
**inputs.to(model.device), |
|
max_new_tokens=600, |
|
temperature=0.6, |
|
top_p=0.95, |
|
do_sample=True, |
|
) |
|
outputs = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:]) |
|
|
|
print(outputs[0]) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import json |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import torch |
|
from huggingface_hub import file_exists, hf_hub_download |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoProcessor, |
|
GenerationConfig, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "microsoft/Phi-4-mini-flash-reasoning" |
|
save_folder = "/tmp/tiny-random/phi-4-flash" |
|
|
|
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) |
|
processor.save_pretrained(save_folder) |
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
for key in ['AutoConfig', 'AutoModelForCausalLM']: |
|
config_json['auto_map'][key] = f'{source_model_id}--' + config_json['auto_map'][key] |
|
automap = config_json['auto_map'] |
|
config_json['hidden_size'] = 64 |
|
config_json['intermediate_size'] = 64 |
|
config_json['num_attention_heads'] = 2 |
|
config_json['num_hidden_layers'] = 4 |
|
config_json['num_key_value_heads'] = 2 |
|
config_json['tie_word_embeddings'] = True |
|
config_json['sliding_window'] = 512 |
|
config_json['use_cache'] = True |
|
config_json['mb_per_layer'] = 2 # first layer is mamba |
|
|
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
config = AutoConfig.from_pretrained( |
|
save_folder, |
|
trust_remote_code=True, |
|
) |
|
print(config) |
|
torch.set_default_dtype(torch.bfloat16) |
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) |
|
torch.set_default_dtype(torch.float32) |
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
model = model.cpu() # cpu is more stable for random initialization across machines |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.2) |
|
print(name, p.shape) |
|
model.save_pretrained(save_folder) |
|
print(model) |
|
|
|
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
config_json['auto_map'] = automap |
|
config_json['sliding_window'] = 512 # a bugfix for '<' not supported between instances of 'int' and 'list' |
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
for python_file in Path(save_folder).glob('*.py'): |
|
if python_file.name.startswith('modeling_') or python_file.name.startswith('configuration_'): |
|
python_file.unlink() |
|
``` |
|
|
|
### Printing the model: |
|
|
|
```text |
|
Phi4FlashForCausalLM( |
|
(model): Phi4FlashModel( |
|
(embed_tokens): Embedding(200064, 64, padding_idx=199999) |
|
(embed_dropout): Dropout(p=0.0, inplace=False) |
|
(layers): ModuleList( |
|
(0): SambaYDecoderLayer( |
|
(mlp): SambaYMLP( |
|
(fc1): Linear(in_features=64, out_features=128, bias=False) |
|
(fc2): Linear(in_features=64, out_features=64, bias=False) |
|
(activation_fn): SiLU() |
|
) |
|
(input_layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) |
|
(attn): Phi3Mamba( |
|
(in_proj): Linear(in_features=64, out_features=256, bias=False) |
|
(conv1d): Conv1d(128, 128, kernel_size=(4,), stride=(1,), padding=(3,), groups=128) |
|
(act): SiLU() |
|
(x_proj): Linear(in_features=128, out_features=36, bias=False) |
|
(dt_proj): Linear(in_features=4, out_features=128, bias=True) |
|
(out_proj): Linear(in_features=128, out_features=64, bias=False) |
|
) |
|
(resid_attn_dropout): Dropout(p=0.0, inplace=False) |
|
(resid_mlp_dropout): Dropout(p=0.0, inplace=False) |
|
(post_attention_layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) |
|
) |
|
(1): SambaYDecoderLayer( |
|
(mlp): SambaYMLP( |
|
(fc1): Linear(in_features=64, out_features=128, bias=False) |
|
(fc2): Linear(in_features=64, out_features=64, bias=False) |
|
(activation_fn): SiLU() |
|
) |
|
(input_layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) |
|
(attn): SambaYFlashAttention2( |
|
(out_proj): Linear(in_features=64, out_features=64, bias=True) |
|
(Wqkv): Linear(in_features=64, out_features=192, bias=True) |
|
(inner_cross_attn): FlashDiffCustomAttention( |
|
(subln): SambaYRMSNorm() |
|
) |
|
) |
|
(resid_attn_dropout): Dropout(p=0.0, inplace=False) |
|
(resid_mlp_dropout): Dropout(p=0.0, inplace=False) |
|
(post_attention_layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) |
|
) |
|
(2): SambaYDecoderLayer( |
|
(mlp): SambaYMLP( |
|
(fc1): Linear(in_features=64, out_features=128, bias=False) |
|
(fc2): Linear(in_features=64, out_features=64, bias=False) |
|
(activation_fn): SiLU() |
|
) |
|
(input_layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) |
|
(attn): Phi3Mamba( |
|
(in_proj): Linear(in_features=64, out_features=256, bias=False) |
|
(conv1d): Conv1d(128, 128, kernel_size=(4,), stride=(1,), padding=(3,), groups=128) |
|
(act): SiLU() |
|
(x_proj): Linear(in_features=128, out_features=36, bias=False) |
|
(dt_proj): Linear(in_features=4, out_features=128, bias=True) |
|
(out_proj): Linear(in_features=128, out_features=64, bias=False) |
|
) |
|
(resid_attn_dropout): Dropout(p=0.0, inplace=False) |
|
(resid_mlp_dropout): Dropout(p=0.0, inplace=False) |
|
(post_attention_layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) |
|
) |
|
(3): SambaYDecoderLayer( |
|
(mlp): SambaYMLP( |
|
(fc1): Linear(in_features=64, out_features=128, bias=False) |
|
(fc2): Linear(in_features=64, out_features=64, bias=False) |
|
(activation_fn): SiLU() |
|
) |
|
(input_layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) |
|
(attn): SambaYFlashAttention2( |
|
(out_proj): Linear(in_features=64, out_features=64, bias=True) |
|
(Wqkv): Linear(in_features=64, out_features=192, bias=True) |
|
(inner_cross_attn): FlashDiffCustomAttention( |
|
(subln): SambaYRMSNorm() |
|
) |
|
) |
|
(resid_attn_dropout): Dropout(p=0.0, inplace=False) |
|
(resid_mlp_dropout): Dropout(p=0.0, inplace=False) |
|
(post_attention_layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) |
|
) |
|
) |
|
(final_layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) |
|
) |
|
(lm_head): Linear(in_features=64, out_features=200064, bias=False) |
|
) |
|
``` |