File size: 4,568 Bytes
192e289 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
example_title: Hello world
group: Python
base_model:
- microsoft/Phi-tiny-MoE-instruct
---
This tiny model is for debugging. It is randomly initialized with the config adapted from [microsoft/Phi-tiny-MoE-instruct](https://huggingface.co/microsoft/Phi-tiny-MoE-instruct).
### Example usage:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "tiny-random/phi-moe"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, trust_remote_code=True)
print(pipe('Write an article about Artificial Intelligence.'))
```
### Codes to create this repo:
```python
import json
from pathlib import Path
import torch
import accelerate
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
set_seed,
)
source_model_id = "microsoft/Phi-tiny-MoE-instruct"
save_folder = "/tmp/tiny-random/phi-moe"
processor = AutoTokenizer.from_pretrained(source_model_id)
processor.save_pretrained(save_folder)
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config_json = json.load(f)
for k, v in config_json['auto_map'].items():
config_json['auto_map'][k] = f'{source_model_id}--{v}'
config_json['head_dim'] = 32
config_json['hidden_size'] = 64
config_json['intermediate_size'] = 128
config_json['num_attention_heads'] = 2
config_json['num_experts_per_tok'] = 2
config_json['num_hidden_layers'] = 2
config_json['num_key_value_heads'] = 1
config_json['num_local_experts'] = 8
config_json['tie_word_embeddings'] = True
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
config = AutoConfig.from_pretrained(
save_folder,
trust_remote_code=True,
)
print(config)
automap = config_json['auto_map']
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
set_seed(42)
model = model.cpu() # cpu is more stable for random initialization across machines
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.2)
print(name, p.shape)
model.save_pretrained(save_folder)
print(model)
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f:
config_json = json.load(f)
config_json['auto_map'] = automap
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
for python_file in Path(save_folder).glob('*.py'):
python_file.unlink()
```
### Printing the model:
```text
PhiMoEForCausalLM(
(model): PhiMoEModel(
(embed_tokens): Embedding(32064, 64)
(layers): ModuleList(
(0-1): 2 x PhiMoEDecoderLayer(
(self_attn): PhiMoESdpaAttention(
(q_proj): Linear(in_features=64, out_features=64, bias=True)
(k_proj): Linear(in_features=64, out_features=32, bias=True)
(v_proj): Linear(in_features=64, out_features=32, bias=True)
(o_proj): Linear(in_features=64, out_features=64, bias=True)
(rotary_emb): PhiMoERotaryEmbedding()
)
(block_sparse_moe): PhiMoESparseMoeBlock(
(gate): Linear(in_features=64, out_features=8, bias=False)
(experts): ModuleList(
(0-7): 8 x PhiMoEBlockSparseTop2MLP(
(w1): Linear(in_features=64, out_features=128, bias=False)
(w2): Linear(in_features=128, out_features=64, bias=False)
(w3): Linear(in_features=64, out_features=128, bias=False)
(act_fn): SiLU()
)
)
)
(input_layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(post_attention_layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
)
)
(norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
)
(lm_head): Linear(in_features=64, out_features=32064, bias=True)
)
``` |