|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
base_model: |
|
- microsoft/Phi-tiny-MoE-instruct |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [microsoft/Phi-tiny-MoE-instruct](https://huggingface.co/microsoft/Phi-tiny-MoE-instruct). |
|
|
|
### Example usage: |
|
|
|
```python |
|
import torch |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
model_id = "tiny-random/phi-moe" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
) |
|
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, trust_remote_code=True) |
|
print(pipe('Write an article about Artificial Intelligence.')) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import json |
|
from pathlib import Path |
|
|
|
import torch |
|
|
|
import accelerate |
|
from huggingface_hub import file_exists, hf_hub_download |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "microsoft/Phi-tiny-MoE-instruct" |
|
save_folder = "/tmp/tiny-random/phi-moe" |
|
|
|
processor = AutoTokenizer.from_pretrained(source_model_id) |
|
processor.save_pretrained(save_folder) |
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
|
|
for k, v in config_json['auto_map'].items(): |
|
config_json['auto_map'][k] = f'{source_model_id}--{v}' |
|
config_json['head_dim'] = 32 |
|
config_json['hidden_size'] = 64 |
|
config_json['intermediate_size'] = 128 |
|
config_json['num_attention_heads'] = 2 |
|
config_json['num_experts_per_tok'] = 2 |
|
config_json['num_hidden_layers'] = 2 |
|
config_json['num_key_value_heads'] = 1 |
|
config_json['num_local_experts'] = 8 |
|
config_json['tie_word_embeddings'] = True |
|
|
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
|
|
config = AutoConfig.from_pretrained( |
|
save_folder, |
|
trust_remote_code=True, |
|
) |
|
print(config) |
|
automap = config_json['auto_map'] |
|
torch.set_default_dtype(torch.bfloat16) |
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) |
|
torch.set_default_dtype(torch.float32) |
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
model = model.cpu() # cpu is more stable for random initialization across machines |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.2) |
|
print(name, p.shape) |
|
model.save_pretrained(save_folder) |
|
print(model) |
|
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
config_json['auto_map'] = automap |
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
for python_file in Path(save_folder).glob('*.py'): |
|
python_file.unlink() |
|
``` |
|
|
|
### Printing the model: |
|
|
|
```text |
|
PhiMoEForCausalLM( |
|
(model): PhiMoEModel( |
|
(embed_tokens): Embedding(32064, 64) |
|
(layers): ModuleList( |
|
(0-1): 2 x PhiMoEDecoderLayer( |
|
(self_attn): PhiMoESdpaAttention( |
|
(q_proj): Linear(in_features=64, out_features=64, bias=True) |
|
(k_proj): Linear(in_features=64, out_features=32, bias=True) |
|
(v_proj): Linear(in_features=64, out_features=32, bias=True) |
|
(o_proj): Linear(in_features=64, out_features=64, bias=True) |
|
(rotary_emb): PhiMoERotaryEmbedding() |
|
) |
|
(block_sparse_moe): PhiMoESparseMoeBlock( |
|
(gate): Linear(in_features=64, out_features=8, bias=False) |
|
(experts): ModuleList( |
|
(0-7): 8 x PhiMoEBlockSparseTop2MLP( |
|
(w1): Linear(in_features=64, out_features=128, bias=False) |
|
(w2): Linear(in_features=128, out_features=64, bias=False) |
|
(w3): Linear(in_features=64, out_features=128, bias=False) |
|
(act_fn): SiLU() |
|
) |
|
) |
|
) |
|
(input_layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) |
|
(post_attention_layernorm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) |
|
) |
|
) |
|
(norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) |
|
) |
|
(lm_head): Linear(in_features=64, out_features=32064, bias=True) |
|
) |
|
``` |