|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
base_model: |
|
- HuggingFaceTB/SmolLM3-3B |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [HuggingFaceTB/SmolLM3-3B](https://huggingface.co/HuggingFaceTB/SmolLM3-3B). |
|
|
|
### Example usage: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_id = "tiny-random/smollm3" |
|
device = "cuda" # for GPU usage or "cpu" for CPU usage |
|
|
|
# load the tokenizer and the model |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True |
|
).to(device) |
|
|
|
# prepare the model input |
|
prompt = "Give me a brief explanation of gravity in simple terms." |
|
messages_think = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
text = tokenizer.apply_chat_template( |
|
messages_think, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
# Generate the output |
|
generated_ids = model.generate(**model_inputs, max_new_tokens=200) |
|
|
|
# Get and decode the output |
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):] |
|
print(tokenizer.decode(output_ids, skip_special_tokens=True)) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import json |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import torch |
|
from huggingface_hub import file_exists, hf_hub_download |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoProcessor, |
|
GenerationConfig, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "HuggingFaceTB/SmolLM3-3B" |
|
save_folder = "/tmp/tiny-random/smollm3" |
|
|
|
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) |
|
processor.save_pretrained(save_folder) |
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
config_json['hidden_size'] = 64 |
|
config_json['intermediate_size'] = 128 |
|
config_json['num_attention_heads'] = 2 |
|
config_json['num_hidden_layers'] = 2 |
|
config_json['num_key_value_heads'] = 1 |
|
config_json['tie_word_embeddings'] = True |
|
config_json['layer_types'] = None |
|
config_json['no_rope_layer_interval'] = 2 |
|
config_json['use_sliding_window'] = True |
|
config_json['sliding_window'] = 128 |
|
config_json['use_cache'] = True |
|
config_json['layer_types'] = None |
|
config_json['no_rope_layers'] = None |
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
|
|
config = AutoConfig.from_pretrained( |
|
save_folder, |
|
trust_remote_code=True, |
|
) |
|
print(config) |
|
torch.set_default_dtype(torch.bfloat16) |
|
model = AutoModelForCausalLM.from_config(config) |
|
torch.set_default_dtype(torch.float32) |
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
model = model.cpu() # cpu is more stable for random initialization across machines |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.2) |
|
print(name, p.shape) |
|
model.save_pretrained(save_folder) |
|
print(model) |
|
``` |
|
|
|
### Printing the model: |
|
|
|
```text |
|
SmolLM3ForCausalLM( |
|
(model): SmolLM3Model( |
|
(embed_tokens): Embedding(128256, 64, padding_idx=128004) |
|
(layers): ModuleList( |
|
(0-1): 2 x SmolLM3DecoderLayer( |
|
(self_attn): SmolLM3Attention( |
|
(q_proj): Linear(in_features=64, out_features=64, bias=False) |
|
(k_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(v_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(o_proj): Linear(in_features=64, out_features=64, bias=False) |
|
) |
|
(mlp): SmolLM3MLP( |
|
(gate_proj): Linear(in_features=64, out_features=128, bias=False) |
|
(up_proj): Linear(in_features=64, out_features=128, bias=False) |
|
(down_proj): Linear(in_features=128, out_features=64, bias=False) |
|
(act_fn): SiLU() |
|
) |
|
(input_layernorm): SmolLM3RMSNorm((64,), eps=1e-06) |
|
(post_attention_layernorm): SmolLM3RMSNorm((64,), eps=1e-06) |
|
) |
|
) |
|
(norm): SmolLM3RMSNorm((64,), eps=1e-06) |
|
(rotary_emb): SmolLM3RotaryEmbedding() |
|
) |
|
(lm_head): Linear(in_features=64, out_features=128256, bias=False) |
|
) |
|
``` |