tlsalfm820 commited on
Commit
e170299
·
1 Parent(s): a3d4437

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - wer
7
+ model-index:
8
+ - name: wav2vec2-base-librispeech
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-base-librispeech
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2162
20
+ - Wer: 0.1419
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0001
40
+ - train_batch_size: 64
41
+ - eval_batch_size: 32
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 1000
46
+ - num_epochs: 30
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 3.606 | 4.13 | 500 | 2.0411 | 0.7943 |
54
+ | 0.3862 | 8.26 | 1000 | 0.3058 | 0.2202 |
55
+ | 0.1253 | 12.4 | 1500 | 0.2450 | 0.1908 |
56
+ | 0.0794 | 16.53 | 2000 | 0.2152 | 0.1531 |
57
+ | 0.0566 | 20.66 | 2500 | 0.2012 | 0.1457 |
58
+ | 0.0446 | 24.79 | 3000 | 0.2061 | 0.1432 |
59
+ | 0.0363 | 28.93 | 3500 | 0.2162 | 0.1419 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.29.2
65
+ - Pytorch 2.0.1+cu118
66
+ - Datasets 2.12.0
67
+ - Tokenizers 0.13.3