--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - librispeech_asr metrics: - wer model-index: - name: SpeechGPT results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: librispeech_asr type: librispeech_asr config: clean split: None args: 'config: clean, split: train' metrics: - name: Wer type: wer value: 23.544963481436394 --- # SpeechGPT This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.5354 - Wer: 23.5450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.0518 | 0.12 | 1000 | 0.7491 | 31.7103 | | 0.8884 | 0.24 | 2000 | 0.6588 | 27.4003 | | 0.8061 | 0.36 | 3000 | 0.6177 | 26.4569 | | 0.8549 | 0.48 | 4000 | 0.5888 | 25.5002 | | 0.7836 | 0.6 | 5000 | 0.5688 | 25.8939 | | 0.691 | 0.72 | 6000 | 0.5542 | 24.1574 | | 0.7044 | 0.84 | 7000 | 0.5429 | 23.5450 | | 0.7309 | 0.97 | 8000 | 0.5354 | 23.5450 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2