add sd-turbo onnx
Browse files
ORT_CUDA/sd-turbo/engine/clip.ort_cuda.fp16/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f1b1d827fb6013c67ac3f349b06d1a159373c2faf5253555e20b14ce2ebaacf
|
3 |
+
size 680852028
|
ORT_CUDA/sd-turbo/engine/unet.ort_cuda.fp16/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf77e0fc1a30bd77cbe86ddefccaadc30e2dc3a667c92418f3811f5417ce2af1
|
3 |
+
size 371766
|
ORT_CUDA/sd-turbo/engine/unet.ort_cuda.fp16/model.onnx.data
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:402069ca12429e3f7b810770a49f0121a3f0f025a38317ebfd4b956d7de1c41e
|
3 |
+
size 1732024320
|
ORT_CUDA/sd-turbo/engine/vae.ort_cuda.fp16/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a72b771027dde10c6bb0af1347c9e30b0df54f186f3ff7c688f2b89354bcc7a2
|
3 |
+
size 99070385
|
README.md
CHANGED
@@ -1,3 +1,99 @@
|
|
1 |
---
|
2 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: openrail++
|
3 |
+
base_model: stabilityai/sd-turbo
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
tags:
|
7 |
+
- stable-diffusion
|
8 |
+
- sdxl
|
9 |
+
- onnxruntime
|
10 |
+
- onnx
|
11 |
+
- text-to-image
|
12 |
---
|
13 |
+
|
14 |
+
|
15 |
+
# Stable Diffusion XL Turbo for ONNX Runtime
|
16 |
+
|
17 |
+
## Introduction
|
18 |
+
|
19 |
+
This repository hosts the optimized versions of **SD Turbo** to accelerate inference with ONNX Runtime CUDA execution provider.
|
20 |
+
|
21 |
+
See the [usage instructions](#usage-example) for how to run the SDXL pipeline with the ONNX files hosted in this repository.
|
22 |
+
|
23 |
+
## Model Description
|
24 |
+
|
25 |
+
- **Developed by:** Stability AI
|
26 |
+
- **Model type:** Diffusion-based text-to-image generative model
|
27 |
+
- **License:** [STABILITY AI NON-COMMERCIAL RESEARCH COMMUNITY LICENSE](https://huggingface.co/stabilityai/sd-turbo/blob/main/LICENSE)
|
28 |
+
- **Model Description:** This is a conversion of the [SD-Turbo](https://huggingface.co/stabilityai/sd-turbo) model for [ONNX Runtime](https://github.com/microsoft/onnxruntime) inference with CUDA execution provider.
|
29 |
+
|
30 |
+
## Performance Comparison
|
31 |
+
|
32 |
+
#### Latency
|
33 |
+
|
34 |
+
Below is average latency of generating an image of size 512x512 using NVIDIA A100-SXM4-80GB GPU:
|
35 |
+
|
36 |
+
| Engine | Batch Size | Steps | PyTorch 2.1 | ONNX Runtime CUDA |
|
37 |
+
|-------------|------------|------ | ----------------|-------------------|
|
38 |
+
| Static | 1 | 1 | 85.3 ms | 32.9 ms |
|
39 |
+
| Static | 4 | 1 | 213.8 ms | 97.5 ms |
|
40 |
+
| Static | 1 | 4 | 117.4 ms | 62.5 ms |
|
41 |
+
| Static | 4 | 4 | 294.3 ms | 168.3 ms |
|
42 |
+
|
43 |
+
|
44 |
+
Static means the engine is built for the given batch size and image size combination, and CUDA graph is used to speed up.
|
45 |
+
|
46 |
+
|
47 |
+
## Usage Example
|
48 |
+
|
49 |
+
Following the [demo instructions](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/stable_diffusion/README.md#run-demo-with-docker). Example steps:
|
50 |
+
|
51 |
+
0. Install nvidia-docker using these [instructions](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html).
|
52 |
+
|
53 |
+
1. Clone onnxruntime repository.
|
54 |
+
```shell
|
55 |
+
git clone https://github.com/microsoft/onnxruntime
|
56 |
+
cd onnxruntime
|
57 |
+
```
|
58 |
+
|
59 |
+
2. Download the SDXL ONNX files from this repo
|
60 |
+
```shell
|
61 |
+
git lfs install
|
62 |
+
git clone https://huggingface.co/tlwu/sdxl-turbo-onnxruntime
|
63 |
+
```
|
64 |
+
|
65 |
+
3. Launch the docker
|
66 |
+
```shell
|
67 |
+
docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:23.10-py3 /bin/bash
|
68 |
+
```
|
69 |
+
|
70 |
+
4. Build ONNX Runtime from source
|
71 |
+
```shell
|
72 |
+
export CUDACXX=/usr/local/cuda-12.2/bin/nvcc
|
73 |
+
git config --global --add safe.directory '*'
|
74 |
+
sh build.sh --config Release --build_shared_lib --parallel --use_cuda --cuda_version 12.2 \
|
75 |
+
--cuda_home /usr/local/cuda-12.2 --cudnn_home /usr/lib/x86_64-linux-gnu/ --build_wheel --skip_tests \
|
76 |
+
--use_tensorrt --tensorrt_home /usr/src/tensorrt \
|
77 |
+
--cmake_extra_defines onnxruntime_BUILD_UNIT_TESTS=OFF \
|
78 |
+
--cmake_extra_defines CMAKE_CUDA_ARCHITECTURES=80 \
|
79 |
+
--allow_running_as_root
|
80 |
+
python3 -m pip install build/Linux/Release/dist/onnxruntime_gpu-*-cp310-cp310-linux_x86_64.whl --force-reinstall
|
81 |
+
```
|
82 |
+
|
83 |
+
If the GPU is not A100, change CMAKE_CUDA_ARCHITECTURES=80 in the command line according to the GPU compute capacity (like 89 for RTX 4090, or 86 for RTX 3090). If your machine has less than 64GB memory, replace --parallel by --parallel 4 --nvcc_threads 1 to avoid out of memory.
|
84 |
+
|
85 |
+
5. Install libraries and requirements
|
86 |
+
```shell
|
87 |
+
python3 -m pip install --upgrade pip
|
88 |
+
cd /workspace/onnxruntime/python/tools/transformers/models/stable_diffusion
|
89 |
+
python3 -m pip install -r requirements-cuda12.txt
|
90 |
+
python3 -m pip install --upgrade polygraphy onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com
|
91 |
+
```
|
92 |
+
|
93 |
+
6. Perform ONNX Runtime optimized inference
|
94 |
+
```shell
|
95 |
+
python3 demo_txt2img.py \
|
96 |
+
"starry night over Golden Gate Bridge by van gogh" \
|
97 |
+
--version sd-turbo \
|
98 |
+
--work-dir /workspace/sd-turbo-onnxruntime
|
99 |
+
```
|