--- license: openrail++ base_model: stabilityai/sd-turbo language: - en tags: - stable-diffusion - sdxl - onnxruntime - onnx - text-to-image --- # Stable Diffusion XL Turbo for ONNX Runtime ## Introduction This repository hosts the optimized versions of **SD Turbo** to accelerate inference with ONNX Runtime CUDA execution provider. See the [usage instructions](#usage-example) for how to run the SDXL pipeline with the ONNX files hosted in this repository. ## Model Description - **Developed by:** Stability AI - **Model type:** Diffusion-based text-to-image generative model - **License:** [STABILITY AI NON-COMMERCIAL RESEARCH COMMUNITY LICENSE](https://huggingface.co/stabilityai/sd-turbo/blob/main/LICENSE) - **Model Description:** This is a conversion of the [SD-Turbo](https://huggingface.co/stabilityai/sd-turbo) model for [ONNX Runtime](https://github.com/microsoft/onnxruntime) inference with CUDA execution provider. ## Performance Comparison #### Latency Below is average latency of generating an image of size 512x512 using NVIDIA A100-SXM4-80GB GPU: | Engine | Batch Size | Steps | PyTorch 2.1 | ONNX Runtime CUDA | |-------------|------------|------ | ----------------|-------------------| | Static | 1 | 1 | 85.3 ms | 32.9 ms | | Static | 4 | 1 | 213.8 ms | 97.5 ms | | Static | 1 | 4 | 117.4 ms | 62.5 ms | | Static | 4 | 4 | 294.3 ms | 168.3 ms | Static means the engine is built for the given batch size and image size combination, and CUDA graph is used to speed up. ## Usage Example Following the [demo instructions](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/stable_diffusion/README.md#run-demo-with-docker). Example steps: 0. Install nvidia-docker using these [instructions](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html). 1. Clone onnxruntime repository. ```shell git clone https://github.com/microsoft/onnxruntime cd onnxruntime ``` 2. Download the SDXL ONNX files from this repo ```shell git lfs install git clone https://huggingface.co/tlwu/sdxl-turbo-onnxruntime ``` 3. Launch the docker ```shell docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:23.10-py3 /bin/bash ``` 4. Build ONNX Runtime from source ```shell export CUDACXX=/usr/local/cuda-12.2/bin/nvcc git config --global --add safe.directory '*' sh build.sh --config Release --build_shared_lib --parallel --use_cuda --cuda_version 12.2 \ --cuda_home /usr/local/cuda-12.2 --cudnn_home /usr/lib/x86_64-linux-gnu/ --build_wheel --skip_tests \ --use_tensorrt --tensorrt_home /usr/src/tensorrt \ --cmake_extra_defines onnxruntime_BUILD_UNIT_TESTS=OFF \ --cmake_extra_defines CMAKE_CUDA_ARCHITECTURES=80 \ --allow_running_as_root python3 -m pip install build/Linux/Release/dist/onnxruntime_gpu-*-cp310-cp310-linux_x86_64.whl --force-reinstall ``` If the GPU is not A100, change CMAKE_CUDA_ARCHITECTURES=80 in the command line according to the GPU compute capacity (like 89 for RTX 4090, or 86 for RTX 3090). If your machine has less than 64GB memory, replace --parallel by --parallel 4 --nvcc_threads 1 to avoid out of memory. 5. Install libraries and requirements ```shell python3 -m pip install --upgrade pip cd /workspace/onnxruntime/python/tools/transformers/models/stable_diffusion python3 -m pip install -r requirements-cuda12.txt python3 -m pip install --upgrade polygraphy onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com ``` 6. Perform ONNX Runtime optimized inference ```shell python3 demo_txt2img.py \ "starry night over Golden Gate Bridge by van gogh" \ --version sd-turbo \ --work-dir /workspace/sd-turbo-onnxruntime ```