tmae commited on
Commit
3065ddf
·
1 Parent(s): 028bba1

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +162 -0
README.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - ja
6
+ programming_language:
7
+ - C
8
+ - C++
9
+ - C#
10
+ - Go
11
+ - Java
12
+ - JavaScript
13
+ - Lua
14
+ - PHP
15
+ - Python
16
+ - Ruby
17
+ - Rust
18
+ - Scala
19
+ - TypeScript
20
+ library_name: transformers
21
+ pipeline_tag: text-generation
22
+ inference: false
23
+ ---
24
+ # llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0
25
+
26
+ This model is based on [llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0) .
27
+
28
+ This version does not have Tokenizer postprocessing (i.e. adding eos token) so there is no need to specify `add_special_tokens=False` on tokenize.
29
+
30
+ ---
31
+
32
+ This repository provides large language models developed by [LLM-jp](https://llm-jp.nii.ac.jp/), a collaborative project launched in Japan.
33
+
34
+ | Model Variant |
35
+ | :--- |
36
+ |**Instruction models**|
37
+ | [llm-jp-13b-instruct-full-jaster-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-jaster-v1.0) |
38
+ | [llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0) |
39
+ | [llm-jp-13b-instruct-full-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-dolly-oasst-v1.0) |
40
+ | [llm-jp-13b-instruct-lora-jaster-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-jaster-v1.0) |
41
+ | [llm-jp-13b-instruct-lora-jaster-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-jaster-dolly-oasst-v1.0) |
42
+ | [llm-jp-13b-instruct-lora-dolly-oasst-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-lora-dolly-oasst-v1.0) |
43
+
44
+
45
+ | |
46
+ | :--- |
47
+ |**Pre-trained models**|
48
+ | [llm-jp-13b-v1.0](https://huggingface.co/llm-jp/llm-jp-13b-v1.0) |
49
+ | [llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) |
50
+ Checkpoints format: Hugging Face Transformers (Megatron-DeepSpeed format models are available [here](https://huggingface.co/llm-jp/llm-jp-13b-v1.0-mdsfmt))
51
+
52
+
53
+ ## Required Libraries and Their Versions
54
+
55
+ - torch>=2.0.0
56
+ - transformers>=4.34.0
57
+ - tokenizers>=0.14.0
58
+ - accelerate==0.23.0
59
+
60
+ ## Usage
61
+
62
+ ```python
63
+ import torch
64
+ from transformers import AutoTokenizer, AutoModelForCausalLM
65
+ tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0")
66
+ model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0", device_map="auto", torch_dtype=torch.float16)
67
+ text = "自然言語処理とは何か"
68
+ text = text + "### 回答:"
69
+ tokenized_input = tokenizer.encode(text, return_tensors="pt").to(model.device)
70
+ with torch.no_grad():
71
+ output = model.generate(
72
+ tokenized_input,
73
+ max_new_tokens=100,
74
+ do_sample=True,
75
+ top_p=0.95,
76
+ temperature=0.7,
77
+ )[0]
78
+ print(tokenizer.decode(output))
79
+ ```
80
+
81
+
82
+ ## Model Details
83
+
84
+ - **Model type:** Transformer-based Language Model
85
+ - **Total seen tokens:** 300B
86
+
87
+ |Model|Params|Layers|Hidden size|Heads|Context length|
88
+ |:---:|:---:|:---:|:---:|:---:|:---:|
89
+ |13b model|13b|40|5120|40|2048|
90
+ |1.3b model|1.3b|24|2048|16|2048|
91
+
92
+
93
+ ## Training
94
+
95
+ - **Pre-training:**
96
+ - **Hardware:** 96 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
97
+ - **Software:** Megatron-DeepSpeed
98
+
99
+ - **Instruction tuning:**
100
+ - **Hardware:** 8 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/))
101
+ - **Software:** [TRL](https://github.com/huggingface/trl), [PEFT](https://github.com/huggingface/peft), and [DeepSpeed](https://github.com/microsoft/DeepSpeed)
102
+
103
+ ## Tokenizer
104
+ The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
105
+ The vocabulary entries were converted from [`llm-jp-tokenizer v2.1 (50k)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.1).
106
+ Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-ja-tokenizer` for details on the vocabulary construction procedure.
107
+ - **Model:** Hugging Face Fast Tokenizer using Unigram byte-fallback model which requires `tokenizers>=0.14.0`
108
+ - **Training algorithm:** SentencePiece Unigram byte-fallback
109
+ - **Training data:** A subset of the datasets for model pre-training
110
+ - **Vocabulary size:** 50,570 (mixed vocabulary of Japanese, English, and source code)
111
+
112
+
113
+ ## Datasets
114
+
115
+ ### Pre-training
116
+
117
+ The models have been pre-trained using a blend of the following datasets.
118
+
119
+ | Language | Dataset | Tokens|
120
+ |:---:|:---:|:---:|
121
+ |Japanese|[Wikipedia](https://huggingface.co/datasets/wikipedia)|1.5B
122
+ ||[mC4](https://huggingface.co/datasets/mc4)|136B
123
+ |English|[Wikipedia](https://huggingface.co/datasets/wikipedia)|5B
124
+ ||[The Pile](https://huggingface.co/datasets/EleutherAI/pile)|135B
125
+ |Codes|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|10B
126
+
127
+ The pre-training was continuously conducted using a total of 10 folds of non-overlapping data, each consisting of approximately 27-28B tokens.
128
+ We finalized the pre-training with additional (potentially) high-quality 27B tokens data obtained from the identical source datasets listed above used for the 10-fold data.
129
+
130
+ ### Instruction tuning
131
+
132
+ The models have been fine-tuned on the following datasets.
133
+
134
+ | Language | Dataset | description |
135
+ |:---|:---:|:---:|
136
+ |Japanese|[jaster](https://github.com/llm-jp/llm-jp-eval)| An automatically transformed data from the existing Japanese NLP datasets |
137
+ ||[databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k)| A translated one by DeepL in LLM-jp |
138
+ ||[OpenAssistant Conversations Dataset](https://huggingface.co/datasets/OpenAssistant/oasst1)| A translated one by DeepL in LLM-jp |
139
+
140
+
141
+ ## Evaluation
142
+ You can view the evaluation results of several LLMs on this [leaderboard](http://wandb.me/llm-jp-leaderboard). We used [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) for the evaluation.
143
+
144
+ ## Risks and Limitations
145
+
146
+ The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
147
+
148
+
149
+ ## Send Questions to
150
+
151
+ llm-jp(at)nii.ac.jp
152
+
153
+
154
+ ## License
155
+
156
+ [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
157
+
158
+
159
+ ## Model Card Authors
160
+ *The names are listed in alphabetical order.*
161
+
162
+ Hirokazu Kiyomaru, Hiroshi Matsuda, Jun Suzuki, Namgi Han, Saku Sugawara, Shota Sasaki, Shuhei Kurita, Taishi Nakamura, Takumi Okamoto.