Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 249.93 +/- 16.88
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7f5c43a670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7f5c43a700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7f5c43a790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7f5c43a820>", "_build": "<function ActorCriticPolicy._build at 0x7f7f5c43a8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7f5c43a940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7f5c43a9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7f5c43aa60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7f5c43aaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7f5c43ab80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7f5c43ac10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7f5c43aca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7f5c432870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673448858773092890, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO7ML0fbZC5ynFEOY3d2TMdZLU74AJsuAAAgD8AAIA/M5lKvAsqqT52HSy99iZxvnDRHz2xjse9AAAAAAAAAACapae76WWyP98ZLL7c0o++WpkOOyLYrzoAAAAAAAAAAHNXKD7PcVE/TkA4veu0rb5dwzA++uMYvgAAAAAAAAAAM5KUvVLq0buUGiO8a8+PPPZdNb1bmHI9AACAPwAAgD9mznk7j9ZsuuFPBDWE4ZovRLHVuq60abQAAIA/AACAPzMk4r33HF8+ZjnyPQFyeb7OOJM8HjB0OwAAAAAAAAAAM2XsvK5FgLp2S8+5Ty2MPMAirjtCpXO9AACAPwAAgD9mPY093jItP5NtT72OU8u+W8/UPKjf8LkAAAAAAAAAAA3y+D2RSNI9KuWQvtT8U77Gxqe8isFGvQAAAAAAAAAAzffJPFxf2j42m8g8r2SXvmtqKz0cEkO8AAAAAAAAAADms0E948EmP174R72s5a6+t8YVvEbto7wAAAAAAAAAAGYN8Lzye34/6Bdzva9kzb7usi29jgK1vAAAAAAAAAAAZrblO+zTrLvYXWe8DC9mPL5YFj3fTkO9AACAPwAAgD8zHzs8e/adujvCdTJqm4SwiTivOpbX2LIAAIA/AACAP1od9z1/pBw/shfXvYlopr5RR0k9ICZ9vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIy73ArJDpcUCUhpRSlIwBbJRNGAGMAXSUR0CXWP2VE/jbdX2UKGgGaAloD0MIZFxxcVQ4cUCUhpRSlGgVTR4BaBZHQJdZiamXPZ91fZQoaAZoCWgPQwiOk8K8x8tyQJSGlFKUaBVNEwJoFkdAl1or+kxh2HV9lChoBmgJaA9DCFk2c0jqqXBAlIaUUpRoFU0FAWgWR0CXW6t65XlsdX2UKGgGaAloD0MICoFc4gi9ckCUhpRSlGgVTREBaBZHQJdc4JHAh0R1fZQoaAZoCWgPQwjK372jxoNvQJSGlFKUaBVNCAFoFkdAl10Ij0L+gnV9lChoBmgJaA9DCIY3a/C+I29AlIaUUpRoFU1BAWgWR0CXXZFgUlAvdX2UKGgGaAloD0MItMwiFBthcECUhpRSlGgVTaQBaBZHQJdeSmixmkF1fZQoaAZoCWgPQwgSS8rdJ3tyQJSGlFKUaBVNLAFoFkdAl195rpJPInV9lChoBmgJaA9DCBrc1hbeMXBAlIaUUpRoFUv0aBZHQJdgH8O09hZ1fZQoaAZoCWgPQwjWql0TUtZxQJSGlFKUaBVNSwFoFkdAl2EwIQe3hHV9lChoBmgJaA9DCH+mXrcIg25AlIaUUpRoFU0pAWgWR0CXYkt3wCr+dX2UKGgGaAloD0MI07zjFB28cECUhpRSlGgVTRkBaBZHQJdiqVbA1vV1fZQoaAZoCWgPQwi5UPnXclhyQJSGlFKUaBVNegFoFkdAl2PjwH7gsXV9lChoBmgJaA9DCHB9WG/UcXBAlIaUUpRoFU0mAWgWR0CXY+VwPy08dX2UKGgGaAloD0MIwCMqVLddbkCUhpRSlGgVTTIBaBZHQJdkYSL61st1fZQoaAZoCWgPQwh2UfTAx2ZxQJSGlFKUaBVNHAFoFkdAl2T5sj3VTnV9lChoBmgJaA9DCJs7+l8uB3JAlIaUUpRoFU0zAWgWR0CXZRkWykbhdX2UKGgGaAloD0MILgH4p9Rtb0CUhpRSlGgVTQ8BaBZHQJdnbEDQqqh1fZQoaAZoCWgPQwhKsg5Hl01wQJSGlFKUaBVNDgFoFkdAl2eOQ+2VmnV9lChoBmgJaA9DCHxl3qprwHBAlIaUUpRoFU0HAWgWR0CXaLhnanJldX2UKGgGaAloD0MIYVRSJ2B7cUCUhpRSlGgVTSQBaBZHQJdpHGDL8rJ1fZQoaAZoCWgPQwguxsA6TvtyQJSGlFKUaBVNxgFoFkdAl2lojnmq53V9lChoBmgJaA9DCLgiMUHNxHBAlIaUUpRoFU1rAWgWR0CXacXVLBbfdX2UKGgGaAloD0MI4UT0a2uJcUCUhpRSlGgVTSUBaBZHQJdq9iDujRF1fZQoaAZoCWgPQwiuu3mqwwVyQJSGlFKUaBVNCAFoFkdAl2xZosZpBXV9lChoBmgJaA9DCDmYTYBhXG1AlIaUUpRoFU0DAWgWR0CXba6X0Gu+dX2UKGgGaAloD0MI0H6kiMyncECUhpRSlGgVTUkBaBZHQJdt3CzkZJl1fZQoaAZoCWgPQwi1iv7QzJJvQJSGlFKUaBVNZQFoFkdAl233PmganHV9lChoBmgJaA9DCG2tLxJavnJAlIaUUpRoFUv9aBZHQJducQd0aIh1fZQoaAZoCWgPQwgKL8GpT8tyQJSGlFKUaBVNPwFoFkdAl27DcAR02nV9lChoBmgJaA9DCAkYXd6ck3BAlIaUUpRoFU0pAWgWR0CXb3ZRKpT/dX2UKGgGaAloD0MIZ/D3i1kDckCUhpRSlGgVTSQBaBZHQJdv76P8yet1fZQoaAZoCWgPQwj+JhQiIEVxQJSGlFKUaBVNCQFoFkdAl3FE7KaG6HV9lChoBmgJaA9DCNApyM+GtXBAlIaUUpRoFU2DAWgWR0CXcnx0dRzjdX2UKGgGaAloD0MIKA6g3/ctcECUhpRSlGgVTSYBaBZHQJdzwaQ3gk11fZQoaAZoCWgPQwg5Q3HHGyVuQJSGlFKUaBVL9GgWR0CXdFEcsDnvdX2UKGgGaAloD0MIqZ83FSnqcUCUhpRSlGgVTS4BaBZHQJd0fBTGYKJ1fZQoaAZoCWgPQwjdQlciUF5vQJSGlFKUaBVNYwFoFkdAl3UfrjYI0XV9lChoBmgJaA9DCJGdt7FZvXJAlIaUUpRoFU1GAWgWR0CXdjDHwPRRdX2UKGgGaAloD0MIGY18XjFockCUhpRSlGgVTRABaBZHQJd27trsSkF1fZQoaAZoCWgPQwiS6ju/qEtwQJSGlFKUaBVNgAFoFkdAl3gVF+d9UnV9lChoBmgJaA9DCK99Ab0wiHJAlIaUUpRoFU0ZAWgWR0CXeN5T6zmfdX2UKGgGaAloD0MIll0wuKZpcUCUhpRSlGgVTSkBaBZHQJd5ql7+kxh1fZQoaAZoCWgPQwjoSgSq/6VyQJSGlFKUaBVL9GgWR0CXec60Y0l7dX2UKGgGaAloD0MIo1pEFBMNcUCUhpRSlGgVTRoBaBZHQJd5/g88s+V1fZQoaAZoCWgPQwgCuFm8WLxuQJSGlFKUaBVNMAFoFkdAl3puJUHY6HV9lChoBmgJaA9DCGQ7309NEHFAlIaUUpRoFU1XAWgWR0CXkStlZowmdX2UKGgGaAloD0MIA7LXu7/tcECUhpRSlGgVTSoBaBZHQJeRVvS+g151fZQoaAZoCWgPQwhCYOXQohBtQJSGlFKUaBVNGAFoFkdAl5Nr/S6UaHV9lChoBmgJaA9DCEjeOZQhPnFAlIaUUpRoFUv2aBZHQJeT65paibl1fZQoaAZoCWgPQwh2NA71OydtQJSGlFKUaBVNFgFoFkdAl5SBFmWdE3V9lChoBmgJaA9DCJPjTungPnFAlIaUUpRoFU1jAWgWR0CXlRdP+GXYdX2UKGgGaAloD0MI0Oy6tyLTb0CUhpRSlGgVTRIBaBZHQJeVhwQ176Z1fZQoaAZoCWgPQwip29lXnnNyQJSGlFKUaBVNOgFoFkdAl5ZNytFKCnV9lChoBmgJaA9DCFWH3Aw3TXFAlIaUUpRoFU0SAWgWR0CXlo4VymygdX2UKGgGaAloD0MIOxvyz4xGcECUhpRSlGgVS/doFkdAl5dK5CngpHV9lChoBmgJaA9DCOCcEaU91W5AlIaUUpRoFUv+aBZHQJeZFmxt52R1fZQoaAZoCWgPQwjPFDqvsYVxQJSGlFKUaBVL+2gWR0CXmRe+Eh7mdX2UKGgGaAloD0MIUKc8uhH5cECUhpRSlGgVTRkBaBZHQJeZa6MBIWh1fZQoaAZoCWgPQwieswWEFopwQJSGlFKUaBVNEQFoFkdAl5omV7hNunV9lChoBmgJaA9DCCu+ofDZhnFAlIaUUpRoFU1gAWgWR0CXmlsijcmCdX2UKGgGaAloD0MId2aC4dwbcECUhpRSlGgVS/hoFkdAl5qMFyJbdXV9lChoBmgJaA9DCEm8PJ3r2nFAlIaUUpRoFU0EAWgWR0CXmsBbfP5YdX2UKGgGaAloD0MImPc404SycUCUhpRSlGgVTR8BaBZHQJebAVLzwtt1fZQoaAZoCWgPQwi+UMB2MKFuQJSGlFKUaBVL/mgWR0CXnOwSrYGudX2UKGgGaAloD0MI3ewPlBv1cUCUhpRSlGgVTRYBaBZHQJedTs8gZCR1fZQoaAZoCWgPQwjB49u7hpBuQJSGlFKUaBVNCAFoFkdAl53FkMCtBHV9lChoBmgJaA9DCJjCg2bXKUNAlIaUUpRoFUvraBZHQJeerAN5MUR1fZQoaAZoCWgPQwh8CoDxDBVzQJSGlFKUaBVNMQFoFkdAl5+z/hl183V9lChoBmgJaA9DCGniHeDJ33JAlIaUUpRoFU0VAWgWR0CXn+zjWCmNdX2UKGgGaAloD0MIjzS4re0gcECUhpRSlGgVTUIBaBZHQJegzvy9VWF1fZQoaAZoCWgPQwiimSfXlE9yQJSGlFKUaBVNFAFoFkdAl6LCRSxZ+3V9lChoBmgJaA9DCKSNI9YifHJAlIaUUpRoFU0UAWgWR0CXpWpUxVQzdX2UKGgGaAloD0MIGO5cGOlscUCUhpRSlGgVTSsBaBZHQJelewgTyrh1fZQoaAZoCWgPQwhJn1bR3ztwQJSGlFKUaBVNLAFoFkdAl6XVCXyAhHV9lChoBmgJaA9DCB5Robp5tHFAlIaUUpRoFU1nAWgWR0CXps/A0sOHdX2UKGgGaAloD0MIgC2vXO+Zb0CUhpRSlGgVTYIBaBZHQJeoY0XP7el1fZQoaAZoCWgPQwjvkGKAxGdxQJSGlFKUaBVNYQFoFkdAl6iKYeDFqHV9lChoBmgJaA9DCP4PsFYtgXFAlIaUUpRoFU0dAWgWR0CXqSs4DLbIdX2UKGgGaAloD0MIoWZIFYVLcUCUhpRSlGgVTR0BaBZHQJepvdhy8z11fZQoaAZoCWgPQwgMdsO2xTpvQJSGlFKUaBVNlQFoFkdAl6nxTjvNNnV9lChoBmgJaA9DCC3NrRAWpXBAlIaUUpRoFU0gAWgWR0CXqtxMFlkIdX2UKGgGaAloD0MI51CGqhjAb0CUhpRSlGgVTfkBaBZHQJeq8kC3gDR1fZQoaAZoCWgPQwiu82+XPVRwQJSGlFKUaBVL+2gWR0CXq52Xsw+MdX2UKGgGaAloD0MIvRk1X6VlcUCUhpRSlGgVTRkBaBZHQJero9cKPXF1fZQoaAZoCWgPQwjdQlci0H1wQJSGlFKUaBVNhgFoFkdAl6x7EcbR4XV9lChoBmgJaA9DCPTF3osvznFAlIaUUpRoFU1aAWgWR0CXrfR6F/QTdX2UKGgGaAloD0MIyOpWzwlNcUCUhpRSlGgVTRQBaBZHQJeuBA5aNdZ1fZQoaAZoCWgPQwgSiULLurZzQJSGlFKUaBVL/GgWR0CXrwat9x6wdX2UKGgGaAloD0MI9rLttLUUbkCUhpRSlGgVTSEBaBZHQJewV90A93d1fZQoaAZoCWgPQwiG56Vi46xuQJSGlFKUaBVNIwFoFkdAl7C9A1Nxl3V9lChoBmgJaA9DCIVCBBxC3G5AlIaUUpRoFU0EAWgWR0CXsannuAqedX2UKGgGaAloD0MIofgx5m7HcECUhpRSlGgVTQ4BaBZHQJeyL4DcM3J1fZQoaAZoCWgPQwjLZDiezwRNQJSGlFKUaBVL7mgWR0CXskSR8twrdX2UKGgGaAloD0MI/b/qyNGRcECUhpRSlGgVTRQBaBZHQJezAIE8q4J1fZQoaAZoCWgPQwj8FwgCpJtwQJSGlFKUaBVNGgFoFkdAl7O9hiLEUHV9lChoBmgJaA9DCMMq3sj8g3NAlIaUUpRoFU1qAWgWR0CXtDOTaCcxdX2UKGgGaAloD0MIbXTOT3H8cECUhpRSlGgVTQ4BaBZHQJe1PI5o4+91fZQoaAZoCWgPQwigUE8fwQJxQJSGlFKUaBVNNwFoFkdAl7bY91U2k3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:acab8ead6205b4f737b4794a9bbed59ae53cbfe42f1eb241306dd32794f56661
|
3 |
+
size 147408
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7f5c43a670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7f5c43a700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7f5c43a790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7f5c43a820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7f5c43a8b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7f5c43a940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7f5c43a9d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7f5c43aa60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7f5c43aaf0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7f5c43ab80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7f5c43ac10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7f5c43aca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f7f5c432870>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673448858773092890,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO7ML0fbZC5ynFEOY3d2TMdZLU74AJsuAAAgD8AAIA/M5lKvAsqqT52HSy99iZxvnDRHz2xjse9AAAAAAAAAACapae76WWyP98ZLL7c0o++WpkOOyLYrzoAAAAAAAAAAHNXKD7PcVE/TkA4veu0rb5dwzA++uMYvgAAAAAAAAAAM5KUvVLq0buUGiO8a8+PPPZdNb1bmHI9AACAPwAAgD9mznk7j9ZsuuFPBDWE4ZovRLHVuq60abQAAIA/AACAPzMk4r33HF8+ZjnyPQFyeb7OOJM8HjB0OwAAAAAAAAAAM2XsvK5FgLp2S8+5Ty2MPMAirjtCpXO9AACAPwAAgD9mPY093jItP5NtT72OU8u+W8/UPKjf8LkAAAAAAAAAAA3y+D2RSNI9KuWQvtT8U77Gxqe8isFGvQAAAAAAAAAAzffJPFxf2j42m8g8r2SXvmtqKz0cEkO8AAAAAAAAAADms0E948EmP174R72s5a6+t8YVvEbto7wAAAAAAAAAAGYN8Lzye34/6Bdzva9kzb7usi29jgK1vAAAAAAAAAAAZrblO+zTrLvYXWe8DC9mPL5YFj3fTkO9AACAPwAAgD8zHzs8e/adujvCdTJqm4SwiTivOpbX2LIAAIA/AACAP1od9z1/pBw/shfXvYlopr5RR0k9ICZ9vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIy73ArJDpcUCUhpRSlIwBbJRNGAGMAXSUR0CXWP2VE/jbdX2UKGgGaAloD0MIZFxxcVQ4cUCUhpRSlGgVTR4BaBZHQJdZiamXPZ91fZQoaAZoCWgPQwiOk8K8x8tyQJSGlFKUaBVNEwJoFkdAl1or+kxh2HV9lChoBmgJaA9DCFk2c0jqqXBAlIaUUpRoFU0FAWgWR0CXW6t65XlsdX2UKGgGaAloD0MICoFc4gi9ckCUhpRSlGgVTREBaBZHQJdc4JHAh0R1fZQoaAZoCWgPQwjK372jxoNvQJSGlFKUaBVNCAFoFkdAl10Ij0L+gnV9lChoBmgJaA9DCIY3a/C+I29AlIaUUpRoFU1BAWgWR0CXXZFgUlAvdX2UKGgGaAloD0MItMwiFBthcECUhpRSlGgVTaQBaBZHQJdeSmixmkF1fZQoaAZoCWgPQwgSS8rdJ3tyQJSGlFKUaBVNLAFoFkdAl195rpJPInV9lChoBmgJaA9DCBrc1hbeMXBAlIaUUpRoFUv0aBZHQJdgH8O09hZ1fZQoaAZoCWgPQwjWql0TUtZxQJSGlFKUaBVNSwFoFkdAl2EwIQe3hHV9lChoBmgJaA9DCH+mXrcIg25AlIaUUpRoFU0pAWgWR0CXYkt3wCr+dX2UKGgGaAloD0MI07zjFB28cECUhpRSlGgVTRkBaBZHQJdiqVbA1vV1fZQoaAZoCWgPQwi5UPnXclhyQJSGlFKUaBVNegFoFkdAl2PjwH7gsXV9lChoBmgJaA9DCHB9WG/UcXBAlIaUUpRoFU0mAWgWR0CXY+VwPy08dX2UKGgGaAloD0MIwCMqVLddbkCUhpRSlGgVTTIBaBZHQJdkYSL61st1fZQoaAZoCWgPQwh2UfTAx2ZxQJSGlFKUaBVNHAFoFkdAl2T5sj3VTnV9lChoBmgJaA9DCJs7+l8uB3JAlIaUUpRoFU0zAWgWR0CXZRkWykbhdX2UKGgGaAloD0MILgH4p9Rtb0CUhpRSlGgVTQ8BaBZHQJdnbEDQqqh1fZQoaAZoCWgPQwhKsg5Hl01wQJSGlFKUaBVNDgFoFkdAl2eOQ+2VmnV9lChoBmgJaA9DCHxl3qprwHBAlIaUUpRoFU0HAWgWR0CXaLhnanJldX2UKGgGaAloD0MIYVRSJ2B7cUCUhpRSlGgVTSQBaBZHQJdpHGDL8rJ1fZQoaAZoCWgPQwguxsA6TvtyQJSGlFKUaBVNxgFoFkdAl2lojnmq53V9lChoBmgJaA9DCLgiMUHNxHBAlIaUUpRoFU1rAWgWR0CXacXVLBbfdX2UKGgGaAloD0MI4UT0a2uJcUCUhpRSlGgVTSUBaBZHQJdq9iDujRF1fZQoaAZoCWgPQwiuu3mqwwVyQJSGlFKUaBVNCAFoFkdAl2xZosZpBXV9lChoBmgJaA9DCDmYTYBhXG1AlIaUUpRoFU0DAWgWR0CXba6X0Gu+dX2UKGgGaAloD0MI0H6kiMyncECUhpRSlGgVTUkBaBZHQJdt3CzkZJl1fZQoaAZoCWgPQwi1iv7QzJJvQJSGlFKUaBVNZQFoFkdAl233PmganHV9lChoBmgJaA9DCG2tLxJavnJAlIaUUpRoFUv9aBZHQJducQd0aIh1fZQoaAZoCWgPQwgKL8GpT8tyQJSGlFKUaBVNPwFoFkdAl27DcAR02nV9lChoBmgJaA9DCAkYXd6ck3BAlIaUUpRoFU0pAWgWR0CXb3ZRKpT/dX2UKGgGaAloD0MIZ/D3i1kDckCUhpRSlGgVTSQBaBZHQJdv76P8yet1fZQoaAZoCWgPQwj+JhQiIEVxQJSGlFKUaBVNCQFoFkdAl3FE7KaG6HV9lChoBmgJaA9DCNApyM+GtXBAlIaUUpRoFU2DAWgWR0CXcnx0dRzjdX2UKGgGaAloD0MIKA6g3/ctcECUhpRSlGgVTSYBaBZHQJdzwaQ3gk11fZQoaAZoCWgPQwg5Q3HHGyVuQJSGlFKUaBVL9GgWR0CXdFEcsDnvdX2UKGgGaAloD0MIqZ83FSnqcUCUhpRSlGgVTS4BaBZHQJd0fBTGYKJ1fZQoaAZoCWgPQwjdQlciUF5vQJSGlFKUaBVNYwFoFkdAl3UfrjYI0XV9lChoBmgJaA9DCJGdt7FZvXJAlIaUUpRoFU1GAWgWR0CXdjDHwPRRdX2UKGgGaAloD0MIGY18XjFockCUhpRSlGgVTRABaBZHQJd27trsSkF1fZQoaAZoCWgPQwiS6ju/qEtwQJSGlFKUaBVNgAFoFkdAl3gVF+d9UnV9lChoBmgJaA9DCK99Ab0wiHJAlIaUUpRoFU0ZAWgWR0CXeN5T6zmfdX2UKGgGaAloD0MIll0wuKZpcUCUhpRSlGgVTSkBaBZHQJd5ql7+kxh1fZQoaAZoCWgPQwjoSgSq/6VyQJSGlFKUaBVL9GgWR0CXec60Y0l7dX2UKGgGaAloD0MIo1pEFBMNcUCUhpRSlGgVTRoBaBZHQJd5/g88s+V1fZQoaAZoCWgPQwgCuFm8WLxuQJSGlFKUaBVNMAFoFkdAl3puJUHY6HV9lChoBmgJaA9DCGQ7309NEHFAlIaUUpRoFU1XAWgWR0CXkStlZowmdX2UKGgGaAloD0MIA7LXu7/tcECUhpRSlGgVTSoBaBZHQJeRVvS+g151fZQoaAZoCWgPQwhCYOXQohBtQJSGlFKUaBVNGAFoFkdAl5Nr/S6UaHV9lChoBmgJaA9DCEjeOZQhPnFAlIaUUpRoFUv2aBZHQJeT65paibl1fZQoaAZoCWgPQwh2NA71OydtQJSGlFKUaBVNFgFoFkdAl5SBFmWdE3V9lChoBmgJaA9DCJPjTungPnFAlIaUUpRoFU1jAWgWR0CXlRdP+GXYdX2UKGgGaAloD0MI0Oy6tyLTb0CUhpRSlGgVTRIBaBZHQJeVhwQ176Z1fZQoaAZoCWgPQwip29lXnnNyQJSGlFKUaBVNOgFoFkdAl5ZNytFKCnV9lChoBmgJaA9DCFWH3Aw3TXFAlIaUUpRoFU0SAWgWR0CXlo4VymygdX2UKGgGaAloD0MIOxvyz4xGcECUhpRSlGgVS/doFkdAl5dK5CngpHV9lChoBmgJaA9DCOCcEaU91W5AlIaUUpRoFUv+aBZHQJeZFmxt52R1fZQoaAZoCWgPQwjPFDqvsYVxQJSGlFKUaBVL+2gWR0CXmRe+Eh7mdX2UKGgGaAloD0MIUKc8uhH5cECUhpRSlGgVTRkBaBZHQJeZa6MBIWh1fZQoaAZoCWgPQwieswWEFopwQJSGlFKUaBVNEQFoFkdAl5omV7hNunV9lChoBmgJaA9DCCu+ofDZhnFAlIaUUpRoFU1gAWgWR0CXmlsijcmCdX2UKGgGaAloD0MId2aC4dwbcECUhpRSlGgVS/hoFkdAl5qMFyJbdXV9lChoBmgJaA9DCEm8PJ3r2nFAlIaUUpRoFU0EAWgWR0CXmsBbfP5YdX2UKGgGaAloD0MImPc404SycUCUhpRSlGgVTR8BaBZHQJebAVLzwtt1fZQoaAZoCWgPQwi+UMB2MKFuQJSGlFKUaBVL/mgWR0CXnOwSrYGudX2UKGgGaAloD0MI3ewPlBv1cUCUhpRSlGgVTRYBaBZHQJedTs8gZCR1fZQoaAZoCWgPQwjB49u7hpBuQJSGlFKUaBVNCAFoFkdAl53FkMCtBHV9lChoBmgJaA9DCJjCg2bXKUNAlIaUUpRoFUvraBZHQJeerAN5MUR1fZQoaAZoCWgPQwh8CoDxDBVzQJSGlFKUaBVNMQFoFkdAl5+z/hl183V9lChoBmgJaA9DCGniHeDJ33JAlIaUUpRoFU0VAWgWR0CXn+zjWCmNdX2UKGgGaAloD0MIjzS4re0gcECUhpRSlGgVTUIBaBZHQJegzvy9VWF1fZQoaAZoCWgPQwiimSfXlE9yQJSGlFKUaBVNFAFoFkdAl6LCRSxZ+3V9lChoBmgJaA9DCKSNI9YifHJAlIaUUpRoFU0UAWgWR0CXpWpUxVQzdX2UKGgGaAloD0MIGO5cGOlscUCUhpRSlGgVTSsBaBZHQJelewgTyrh1fZQoaAZoCWgPQwhJn1bR3ztwQJSGlFKUaBVNLAFoFkdAl6XVCXyAhHV9lChoBmgJaA9DCB5Robp5tHFAlIaUUpRoFU1nAWgWR0CXps/A0sOHdX2UKGgGaAloD0MIgC2vXO+Zb0CUhpRSlGgVTYIBaBZHQJeoY0XP7el1fZQoaAZoCWgPQwjvkGKAxGdxQJSGlFKUaBVNYQFoFkdAl6iKYeDFqHV9lChoBmgJaA9DCP4PsFYtgXFAlIaUUpRoFU0dAWgWR0CXqSs4DLbIdX2UKGgGaAloD0MIoWZIFYVLcUCUhpRSlGgVTR0BaBZHQJepvdhy8z11fZQoaAZoCWgPQwgMdsO2xTpvQJSGlFKUaBVNlQFoFkdAl6nxTjvNNnV9lChoBmgJaA9DCC3NrRAWpXBAlIaUUpRoFU0gAWgWR0CXqtxMFlkIdX2UKGgGaAloD0MI51CGqhjAb0CUhpRSlGgVTfkBaBZHQJeq8kC3gDR1fZQoaAZoCWgPQwiu82+XPVRwQJSGlFKUaBVL+2gWR0CXq52Xsw+MdX2UKGgGaAloD0MIvRk1X6VlcUCUhpRSlGgVTRkBaBZHQJero9cKPXF1fZQoaAZoCWgPQwjdQlci0H1wQJSGlFKUaBVNhgFoFkdAl6x7EcbR4XV9lChoBmgJaA9DCPTF3osvznFAlIaUUpRoFU1aAWgWR0CXrfR6F/QTdX2UKGgGaAloD0MIyOpWzwlNcUCUhpRSlGgVTRQBaBZHQJeuBA5aNdZ1fZQoaAZoCWgPQwgSiULLurZzQJSGlFKUaBVL/GgWR0CXrwat9x6wdX2UKGgGaAloD0MI9rLttLUUbkCUhpRSlGgVTSEBaBZHQJewV90A93d1fZQoaAZoCWgPQwiG56Vi46xuQJSGlFKUaBVNIwFoFkdAl7C9A1Nxl3V9lChoBmgJaA9DCIVCBBxC3G5AlIaUUpRoFU0EAWgWR0CXsannuAqedX2UKGgGaAloD0MIofgx5m7HcECUhpRSlGgVTQ4BaBZHQJeyL4DcM3J1fZQoaAZoCWgPQwjLZDiezwRNQJSGlFKUaBVL7mgWR0CXskSR8twrdX2UKGgGaAloD0MI/b/qyNGRcECUhpRSlGgVTRQBaBZHQJezAIE8q4J1fZQoaAZoCWgPQwj8FwgCpJtwQJSGlFKUaBVNGgFoFkdAl7O9hiLEUHV9lChoBmgJaA9DCMMq3sj8g3NAlIaUUpRoFU1qAWgWR0CXtDOTaCcxdX2UKGgGaAloD0MIbXTOT3H8cECUhpRSlGgVTQ4BaBZHQJe1PI5o4+91fZQoaAZoCWgPQwigUE8fwQJxQJSGlFKUaBVNNwFoFkdAl7bY91U2k3VlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8123cb6404fd9d2f68a085f20bd77a9b36c3a3577cead39d0231ebc56a182e2
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:654e4c480b23e93ff37b53f23b63edf1e952f10e7543621f6116eff145e788ae
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (190 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.92772785433468, "std_reward": 16.884419277176605, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T15:36:41.484056"}
|