tmnam20 commited on
Commit
64ef058
·
verified ·
1 Parent(s): 227f8c0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ base_model: xlm-roberta-base
6
+ tags:
7
+ - generated_from_trainer
8
+ datasets:
9
+ - tmnam20/VieGLUE
10
+ metrics:
11
+ - accuracy
12
+ model-index:
13
+ - name: xlm-roberta-base-sst2-100
14
+ results:
15
+ - task:
16
+ name: Text Classification
17
+ type: text-classification
18
+ dataset:
19
+ name: tmnam20/VieGLUE/SST2
20
+ type: tmnam20/VieGLUE
21
+ config: sst2
22
+ split: validation
23
+ args: sst2
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.8944954128440367
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # xlm-roberta-base-sst2-100
34
+
35
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tmnam20/VieGLUE/SST2 dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.3776
38
+ - Accuracy: 0.8945
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 2e-05
58
+ - train_batch_size: 32
59
+ - eval_batch_size: 16
60
+ - seed: 100
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 3.0
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.4011 | 0.24 | 500 | 0.3866 | 0.8475 |
70
+ | 0.313 | 0.48 | 1000 | 0.3352 | 0.8647 |
71
+ | 0.2626 | 0.71 | 1500 | 0.4805 | 0.8349 |
72
+ | 0.2597 | 0.95 | 2000 | 0.3691 | 0.8681 |
73
+ | 0.2068 | 1.19 | 2500 | 0.3089 | 0.8991 |
74
+ | 0.2347 | 1.43 | 3000 | 0.3957 | 0.8842 |
75
+ | 0.2133 | 1.66 | 3500 | 0.3049 | 0.8991 |
76
+ | 0.1986 | 1.9 | 4000 | 0.3184 | 0.8956 |
77
+ | 0.1596 | 2.14 | 4500 | 0.3846 | 0.8853 |
78
+ | 0.1457 | 2.38 | 5000 | 0.3667 | 0.8968 |
79
+ | 0.1861 | 2.61 | 5500 | 0.3675 | 0.8922 |
80
+ | 0.1401 | 2.85 | 6000 | 0.3853 | 0.8899 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.35.2
86
+ - Pytorch 2.2.0.dev20231203+cu121
87
+ - Datasets 2.15.0
88
+ - Tokenizers 0.15.0