File size: 1,721 Bytes
bbaad0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
language:
- en
license: mit
base_model: xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
model-index:
- name: xlm-roberta-large-vsmec-1
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: tmnam20/VieGLUE/VSMEC
      type: tmnam20/VieGLUE
      config: vsmec
      split: validation
      args: vsmec
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.3250728862973761
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-large-vsmec-1

This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the tmnam20/VieGLUE/VSMEC dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7083
- Accuracy: 0.3251

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.734         | 2.87  | 500  | 1.7182          | 0.3105   |


### Framework versions

- Transformers 4.36.0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0