File size: 1,657 Bytes
1bc26f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
---
license: mit
library_name: transformers
pipeline_tag: text-generation
---
This is the model is trained using paper, [M1: Towards Scalable Test-Time Compute with Mamba Reasoning Models](https://arxiv.org/abs/2504.10449).
| **Model** | **AIME 2025** | **AIME 2024** | **MATH 500** | **AMC 2023** | **OlympiadBench** |
|-----------------------------------|---------------|---------------|--------------|--------------|-------------------|
| Qwen2.5-Math-7B-Instruct (Transformer) | – | 13.3 | 79.8 | 50.6 | 40.7 |
| rStar-Math-7B (Transformer) | – | 26.7 | 78.4 | 47.5 | 47.1 |
| Eurus-2-7B-PRIME (Transformer) | – | 26.7 | 79.2 | 57.8 | 42.1 |
| Qwen2.5-7B-SimpleRL (Transformer) | – | 26.7 | 82.4 | 62.5 | 43.3 |
| DeepSeek-R1-Distill-Qwen-1.5B (Transformer) | 23.0 | 28.8 | 82.8 | 62.9 | 43.3 |
| **M1-3B (Mamba Hybrid Models)** | 23.5 | 28.5 | 84.0 | 62.8 | 47.3 |
Code: https://github.com/jxiw/M1
```
@article{wang2025m1scalabletesttimecompute,
title={M1: Towards Scalable Test-Time Compute with Mamba Reasoning Models},
author={Junxiong Wang and Wen-Ding Li and Daniele Paliotta and Daniel Ritter and Alexander M. Rush and Tri Dao},
journal={arXiv preprint arXiv:2504.10449},
year={2025},
url={https://arxiv.org/abs/2504.10449},
} |