File size: 13,450 Bytes
27140ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
# Copyright (c) Together
# This software is distributed under the terms of the Apache License, Version 2.0
# Author: Michael Poli
import gc
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
import conv1d_cpp
except:
pass
from .utils import column_split
IIR_PREFILL_MODES = [
"recurrence",
"modal-fft",
"hybrid-modal-recurrence",
"modal-scan",
"canonical-fft",
"iir-fir-caching",
]
def canonicalize_modal_system(poles, residues):
"""Canonicalize a modal system.
Args:
poles (Tensor): The poles of the system.
residues (Tensor): The residues of the system.
Returns:
Tuple[Tensor, Tensor]: The canonicalized poles and residues.
"""
raise NotImplementedError
def list_tensors(idx):
for obj in gc.get_objects():
try:
if torch.is_tensor(obj) and isinstance(obj, torch.Tensor):
# dump to log
print(type(obj), obj.size())
el = obj[0]
with open(f"tensors_{idx}.txt", "a") as f:
f.write(f"{type(obj)} {obj.size()} {el}\n")
except Exception as e:
pass
class HyenaInferenceEngine:
def __init__(
self,
fir_fn=None,
iir_prefill_style="modal-fft",
layer_idx=None,
) -> None:
self.fir_fn = fir_fn
assert iir_prefill_style in IIR_PREFILL_MODES, f"iir_prefill_style must be one of {IIR_PREFILL_MODES}"
self.iir_prefill_style = iir_prefill_style
self.layer_idx = layer_idx
self.low_mem_mode = False
def parallel_fir(
self,
fir_fn,
u,
weight,
bias,
L,
fir_length=3,
inference_params=None,
prefill_mode=None,
padding_mask=None,
):
"""Compute the output state of the long convolutional filter."""
# prepare input layout, dimensions and dispatch to fir kernel
if fir_fn != torch.nn.functional.conv1d:
z_pre = fir_fn(u)[:, :L] # B, L, D
z_pre = z_pre.permute(0, 2, 1)
else:
u = u.permute(0, 2, 1) # B, D, L
z_pre = fir_fn(
u,
weight,
bias=None, # don't pass it here, add manually instead! source of small error
stride=1,
padding=fir_length - 1,
groups=u.shape[1],
)[..., :L]
# add manually instead! source of small error
z_pre = z_pre + bias[None, :, None]
# handle padding post fir, the only place with biases
if type(padding_mask) == torch.Tensor:
z_pre = z_pre * padding_mask[:, None]
if inference_params is not None:
# handle seqlen last and dim last cases for `u`
if fir_fn != torch.nn.functional.conv1d:
fir_state = u[:, -fir_length + 1 :].permute(0, 2, 1)
else:
fir_state = u[..., -fir_length + 1 :]
else:
fir_state = None
return z_pre, fir_state
def parallel_iir(
self,
z_pre,
h,
D,
L,
poles,
residues,
t,
dims,
layer_idx,
inference_params=None,
prefill_style="fft",
fftconv_fn=None,
padding_mask=None,
use_flashfft=False,
column_split_hyena=False,
long_fir_threshold=None,
):
"""Compute the output state of the short convolutional filter."""
fft_size = 2 * L
hidden_size, num_attention_heads, hidden_size_per_attention_head, _, _ = dims
# Compatibility with training infra that column splits the projections
if column_split_hyena:
z = z_pre.reshape(
z_pre.shape[0],
num_attention_heads,
3 * hidden_size_per_attention_head,
z_pre.shape[2],
)
x2, x1, v = (
z[:, :, :hidden_size_per_attention_head],
z[
:,
:,
hidden_size_per_attention_head : 2 * hidden_size_per_attention_head,
],
z[:, :, 2 * hidden_size_per_attention_head :],
)
x2, x1, v = (
x2.reshape(x2.shape[0], -1, x2.shape[-1]),
x1.reshape(x1.shape[0], -1, x1.shape[-1]),
v.reshape(v.shape[0], -1, v.shape[-1]),
)
else:
x2, x1, v = z_pre.split([hidden_size, hidden_size, hidden_size], dim=1)
x1v = x1 * v
if inference_params is not None and prefill_style == "recurrence":
y = self.prefill_via_direct_recurrence(
inference_params=inference_params,
x1v=x1v,
L=L,
poles=poles,
residues=residues,
)
else:
if use_flashfft and (L % 2) == 0: # only works with even L
y = fftconv_fn(
x1v.to(dtype=torch.bfloat16).contiguous(),
h.to(dtype=torch.float32),
)
X_s = None
elif long_fir_threshold is None:
H = torch.fft.rfft(h.to(dtype=torch.float32), n=fft_size) / fft_size
X_s = torch.fft.fft(x1v.to(dtype=torch.float32), n=fft_size)
X = X_s[..., : H.shape[-1]]
if len(z_pre.shape) > 3:
H = H.unsqueeze(1)
y = torch.fft.irfft(X * H, n=fft_size, norm="forward")[..., :L]
else:
assert h.shape[0] == 1, "batch size must be 1 for long_fir_threshold"
h = h[0][:, None] # rearrange to d, 1, l for depthwise conv1d
h = h[..., :long_fir_threshold]
y = F.conv1d(
x1v,
h.to(dtype=x1v.dtype),
stride=1,
groups=x1v.shape[1],
padding=h.shape[-1] - 1,
)[..., :L]
y = y.to(dtype=x1v.dtype)
y = (y + x1v * D.unsqueeze(-1)) * x2
if inference_params is not None:
if prefill_style == "fft":
self.prefill_via_modal_fft(
inference_params=inference_params,
x1v=x1v,
X_s=X_s,
L=L,
t=t,
poles=poles,
dims=dims,
layer_idx=layer_idx,
use_flashfft=use_flashfft,
fftconv_fn=fftconv_fn,
)
elif prefill_style == "recurrence":
# recurrent prefill is done before
pass
else:
raise NotImplementedError
if self.low_mem_mode:
# TODO: smarter gc
del z_pre, x2, x1, v, x1v, h, poles, residues
torch.cuda.empty_cache()
return y.permute(0, 2, 1)
def step_fir(self, u, fir_state, weight, bias=None):
"""Step the FIR filter.
Note:
`fir_state` contains the last `short_filter_length - 1` elements of `u`: `u_(L-2), u_{L-1), ...`
We assume dimensions of `short_filter_weight` to be `[d, 1, short_filter_len]` (SISO / multi SISO layout).
"""
h0, h = weight[..., 0, -1], weight[..., 0, :-1]
h0, h = h0[None], h[None]
y = h0 * u + torch.sum(fir_state * h, dim=-1) + bias
# update
fir_state = torch.roll(fir_state, -1, dims=2)
fir_state[..., -1] = u
return y, fir_state
def step_iir(self, x2, x1, v, D, residues, poles, iir_state, iir_groups=1):
x1v = x1 * v
residues, poles = (
torch.view_as_complex(residues.to(torch.float32)),
torch.view_as_complex(poles.to(torch.float32)),
)
# squeeze the dummy seqlen dimension
# D, state_dim, 1 -> 1, D, state_dim
residues, poles = residues[..., 0][None], poles[..., 0][None]
iir_state = poles * iir_state + x1v[..., None]
res_state = torch.sum(residues * iir_state, dim=-1).real
if iir_groups > 1:
raise NotImplementedError
y = x2 * (res_state + D * x1v)
return y, iir_state
def prefill_via_fir_caching(self, u, inference_params, L, *args, **kwargs):
"""Turns the IIR filter into a FIR and uses a cache for decoding."""
raise NotImplementedError(":)")
def prefill_via_direct_recurrence(
self, inference_params, x1v, L, residues, poles, *args, **kwargs
) -> torch.Tensor:
"""
Compute the IIR state via explicit SSM recurrence (modal form)
This is the most memory efficient prefilling method for Hyena filters.
Note:
dtypes: [state: float32, poles: float32, x1v: bfloat16, output: bfloat16]
"""
state_dim = poles.shape[1]
x1v_ = x1v[..., None, None] # b, d, l, sdim, reim
x1v_ = x1v_.repeat(1, 1, 1, state_dim, 2) # b, d, l, sdim, reim
x1v_[..., 1] = 0
state = 0 * x1v_[:, :, 0]
output = 0 * x1v_[:, :, :, 0, 0] # b, d, l
# suppress dummy seqlen dimension
poles = poles[:, :, 0][None]
residues = residues[:, :, 0][None].repeat(x1v_.shape[0], 1, 1, 1) # b, d, sdim, reim
# state: b, d, sdim, reim
# poles: 1, d, sdim, reim
# x1v_: b, d, l, sdim, reim
for i in range(L):
state[..., 0] = poles[..., 0] * state[..., 0] - poles[..., 1] * state[..., 1] + x1v_[:, :, i, :, 0]
state[..., 1] = poles[..., 0] * state[..., 1] + poles[..., 1] * state[..., 0] + x1v_[:, :, i, :, 1]
output[:, :, i] = torch.sum(residues * state, dim=-2)[..., 0] # .real
inference_params.state_dict[self.layer_idx] = torch.view_as_complex(state.to(dtype=torch.float32))
return output
def prefill_via_hybrid_recurrence(self, inference_params, u, log_poles, x1v_f_a, L, *args, **kwargs):
"""
Compute the IIR state via hybrid recurrence-convolution over blocks
"""
raise NotImplementedError(":)")
def prefill_via_scan(self, u, inference_params=None, *args, **kwargs):
raise NotImplementedError
def prefill_via_canonical_fft(self, u, inference_params=None, *args, **kwargs):
"""
Compute the IIR state via a single FFT with the denominator of the SSM in companion form.
This is the most memory efficient "parallelized" prefilling method for Hyena.
From: https://arxiv.org/abs/2310.18780
"""
raise NotImplementedError(":)")
def prefill_via_modal_fft(
self,
inference_params,
x1v,
L,
poles,
t,
dims,
layer_idx,
X_s=None,
use_flashfft=False,
fftconv_fn=None,
state_dtype=torch.complex64,
*args,
**kwargs,
):
"""
Compute the IIR state via a single FFT, using the poles of the SSM in modal form.
"""
# When the model has a long convolution derived from a SSM in modal form and prefill_style is "fft",
# we split the filter into poles and residues and reuse FFT computation on the input.
# This optimization is currently not supported when using flashfftconv.
hidden_size, _, _, state_size, hyena_filter_groups = dims
if use_flashfft:
# using real states
poles = poles.squeeze().reshape(poles.shape[0], -1)[..., None]
state_s = poles**t
if hyena_filter_groups > 1:
raise NotImplementedError
x1v = x1v[:, :, None].repeat(1, 1, 2 * state_size, 1)
x1v = x1v.reshape(x1v.shape[0], -1, x1v.shape[-1])
state_s = state_s[None]
state = fftconv_fn(
x1v.contiguous(),
state_s.to(dtype=torch.float32),
)
state = state[..., L - 1].reshape(x1v.shape[0], hidden_size, state_size, 2)
state = torch.view_as_complex(state.contiguous().to(dtype=torch.float32))
inference_params.state_dict[self.layer_idx] = state
else:
assert X_s is not None
bs = x1v.shape[0]
fft_size = 2 * L
poles = torch.view_as_complex(poles.to(torch.float32))
state_s = poles**t
state_S = torch.fft.fft(state_s, n=fft_size).repeat(bs, 1, 1, 1) # B, D, state_dim, 2 * L
if hyena_filter_groups > 1:
state_S = state_S.repeat_interleave(hidden_size // hyena_filter_groups, 1)
state = torch.fft.ifft(X_s[..., None, :] * state_S, n=fft_size)
inference_params.state_dict[layer_idx] = state[..., L - 1].to(dtype=state_dtype)
def _compute_state(self, log_poles, u, t, L, *args, **kwargs):
"""
Compute the IIR state given an input `u` and log_poles of the modal system.
"""
bs = u.shape[0]
fft_size = 2 * L
U = torch.fft.rfft(u.to(torch.float32), n=fft_size)
fft_size = 2 * L
x = (log_poles * t).exp()
# [batch, hidden_size, state_dim, 2 * seqlen]
X = torch.fft.fft(x, n=fft_size).repeat(bs, 1, 1, 1)
state = torch.fft.ifft(U[..., None, :] * X, n=fft_size)[..., :L]
return state
|