File size: 4,369 Bytes
27140ac
ebac1e8
27140ac
 
ebac1e8
27140ac
 
ebac1e8
 
27140ac
ebac1e8
 
 
 
27140ac
 
ebac1e8
27140ac
 
fa9cf26
ebac1e8
27140ac
ebac1e8
 
 
 
 
 
a35de04
 
ebac1e8
a35de04
 
ebac1e8
 
 
 
 
 
 
 
a35de04
ebac1e8
 
 
 
 
27140ac
 
 
ebac1e8
 
 
27140ac
ebac1e8
a35de04
 
ebac1e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# based on https://github.com/EleutherAI/gpt-neox/blob/main/megatron/tokenizer/tokenizer.py
from __future__ import annotations

import torch

import numpy as np

from os import PathLike
from typing import List, Tuple

from tokenizers import Tokenizer
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.tokenization_utils_base import BatchEncoding, TruncationStrategy
from transformers.utils.generic import TensorType, PaddingStrategy


EMPTY: str = ""


class ByteTokenizer(PreTrainedTokenizer):

    """UTF-8 Encoder."""

    @classmethod
    def from_pretrained(cls, model_id: str | PathLike, **kwargs) -> ByteTokenizer:

        return cls(**kwargs, byte_level=True)

    @property
    def vocab_size(self) -> int:

        return 512

    @property
    def byte_level(self) -> bool:

        return self.init_kwargs.get('byte_level', True)

    def get_vocab(self) -> Dict[str, int]:

        return {chr(i): i for i in range(self.vocab_size)}

    def __len__(self) -> int:

        return self.vocab_size

    def clamp(self, n: int) -> int:

        return max(32, min(n, self.vocab_size))

    def _tokenize(self, text: str, **kwargs) -> List[str]:

        return list(text)

    def byte_tokenize(self, text: str) -> np.ndarray:

        return np.frombuffer(text.encode('utf-8'), dtype=np.uint8)

    def _convert_token_to_id(self, token: str) -> int:

        return self.clamp(ord(token))

    def _convert_id_to_token(self, index: int) -> str:

        return chr(self.clamp(index))

    def convert_tokens_to_string(self, tokens: List[str]) -> str:

        return EMPTY.join(tokens)

    def _decode(self, token_ids: List[int], **kwargs) -> str:

        indices = np.asarray(token_ids, dtype=np.uint8)

        return (
            indices.clip(min=32, max=self.vocab_size, out=indices)
            .tobytes()
            .decode('utf-8')
        )

    def _encode_plus(self, text: str, **kwargs) -> BatchEncoding:

        first_ids = self.byte_tokenize(text).tolist()

        return self.prepare_for_model(
            first_ids,
            pair_ids=None,
            add_special_tokens=kwargs.get('add_special_tokens', False),
            padding=kwargs.get('padding_strategy', PaddingStrategy.DO_NOT_PAD).value,
            truncation=kwargs.get('truncation_strategy', TruncationStrategy.DO_NOT_TRUNCATE).value,
            max_length=kwargs.get('max_length'),
            stride=kwargs.get('stride', 0),
            pad_to_multiple_of=kwargs.get('pad_to_multiple_of'),
            return_tensors=kwargs.get('return_tensors'),
            prepend_batch_axis=True,
            return_attention_mask=kwargs.get('return_attention_mask'),
            return_token_type_ids=kwargs.get('return_token_type_ids'),
            return_overflowing_tokens=kwargs.get('return_overflowing_tokens', False),
            return_special_tokens_mask=kwargs.get('return_special_tokens_mask', False),
            return_length=kwargs.get('return_length', False),
            verbose=kwargs.get('verbose', True),
        )

    def _batch_encode_plus(self, batch_text: List[str], **kwargs) -> BatchEncoding:

        input_ids = [(self.byte_tokenize(text).tolist(), None) for text in batch_text]

        return self._batch_prepare_for_model(
            input_ids,
            add_special_tokens=kwargs.get('add_special_tokens', False),
            padding_strategy=kwargs.get('padding_strategy', PaddingStrategy.DO_NOT_PAD),
            truncation_strategy=kwargs.get('truncation_strategy', TruncationStrategy.DO_NOT_TRUNCATE),
            max_length=kwargs.get('max_length'),
            stride=kwargs.get('stride', 0),
            pad_to_multiple_of=kwargs.get('pad_to_multiple_of'),
            return_attention_mask=kwargs.get('return_attention_mask'),
            return_token_type_ids=kwargs.get('return_token_type_ids'),
            return_overflowing_tokens=kwargs.get('return_overflowing_tokens', False),
            return_special_tokens_mask=kwargs.get('return_special_tokens_mask', False),
            return_length=kwargs.get('return_length', False),
            return_tensors=kwargs.get('return_tensors'),
            verbose=kwargs.get('verbose', True),
        )

    def _save_pretrained(
        self, save_directory: str | PathLike, file_names: Tuple[str], **kwargs
    ) -> Tuple[str]:

        return file_names