Update byte tokenizer to be compatible with auto tokenizer and clean-up.
Browse files- special_tokens_map.json +1 -0
- tokenizer.json +129 -0
- tokenizer_config.json +7 -6
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
tokenizer.json
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# based on https://github.com/EleutherAI/gpt-neox/blob/main/megatron/tokenizer/tokenizer.py
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from os import PathLike
|
9 |
+
from typing import List, Tuple
|
10 |
+
|
11 |
+
from tokenizers import Tokenizer
|
12 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
13 |
+
from transformers.tokenization_utils_base import BatchEncoding, TruncationStrategy
|
14 |
+
from transformers.utils.generic import TensorType, PaddingStrategy
|
15 |
+
|
16 |
+
|
17 |
+
EMPTY: str = ""
|
18 |
+
|
19 |
+
|
20 |
+
class ByteTokenizer(PreTrainedTokenizer):
|
21 |
+
|
22 |
+
"""UTF-8 Encoder."""
|
23 |
+
|
24 |
+
@classmethod
|
25 |
+
def from_pretrained(cls, model_id: str | PathLike, **kwargs) -> ByteTokenizer:
|
26 |
+
|
27 |
+
return cls(**kwargs, byte_level=True)
|
28 |
+
|
29 |
+
@property
|
30 |
+
def vocab_size(self) -> int:
|
31 |
+
|
32 |
+
return 512
|
33 |
+
|
34 |
+
@property
|
35 |
+
def byte_level(self) -> bool:
|
36 |
+
|
37 |
+
return self.init_kwargs.get('byte_level', True)
|
38 |
+
|
39 |
+
def get_vocab(self) -> Dict[str, int]:
|
40 |
+
|
41 |
+
return {chr(i): i for i in range(self.vocab_size)}
|
42 |
+
|
43 |
+
def __len__(self) -> int:
|
44 |
+
|
45 |
+
return self.vocab_size
|
46 |
+
|
47 |
+
def clamp(self, n: int) -> int:
|
48 |
+
|
49 |
+
return max(32, min(n, self.vocab_size))
|
50 |
+
|
51 |
+
def _tokenize(self, text: str, **kwargs) -> List[str]:
|
52 |
+
|
53 |
+
return list(text)
|
54 |
+
|
55 |
+
def byte_tokenize(self, text: str) -> np.ndarray:
|
56 |
+
|
57 |
+
return np.frombuffer(text.encode('utf-8'), dtype=np.uint8)
|
58 |
+
|
59 |
+
def _convert_token_to_id(self, token: str) -> int:
|
60 |
+
|
61 |
+
return self.clamp(ord(token))
|
62 |
+
|
63 |
+
def _convert_id_to_token(self, index: int) -> str:
|
64 |
+
|
65 |
+
return chr(self.clamp(index))
|
66 |
+
|
67 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
68 |
+
|
69 |
+
return EMPTY.join(tokens)
|
70 |
+
|
71 |
+
def _decode(self, token_ids: List[int], **kwargs) -> str:
|
72 |
+
|
73 |
+
indices = np.asarray(token_ids, dtype=np.uint8)
|
74 |
+
|
75 |
+
return (
|
76 |
+
indices.clip(min=32, max=self.vocab_size, out=indices)
|
77 |
+
.tobytes()
|
78 |
+
.decode('utf-8')
|
79 |
+
)
|
80 |
+
|
81 |
+
def _encode_plus(self, text: str, **kwargs) -> BatchEncoding:
|
82 |
+
|
83 |
+
first_ids = self.byte_tokenize(text).tolist()
|
84 |
+
|
85 |
+
return self.prepare_for_model(
|
86 |
+
first_ids,
|
87 |
+
pair_ids=None,
|
88 |
+
add_special_tokens=kwargs.get('add_special_tokens', False),
|
89 |
+
padding=kwargs.get('padding_strategy', PaddingStrategy.DO_NOT_PAD).value,
|
90 |
+
truncation=kwargs.get('truncation_strategy', TruncationStrategy.DO_NOT_TRUNCATE).value,
|
91 |
+
max_length=kwargs.get('max_length'),
|
92 |
+
stride=kwargs.get('stride', 0),
|
93 |
+
pad_to_multiple_of=kwargs.get('pad_to_multiple_of'),
|
94 |
+
return_tensors=kwargs.get('return_tensors'),
|
95 |
+
prepend_batch_axis=True,
|
96 |
+
return_attention_mask=kwargs.get('return_attention_mask'),
|
97 |
+
return_token_type_ids=kwargs.get('return_token_type_ids'),
|
98 |
+
return_overflowing_tokens=kwargs.get('return_overflowing_tokens', False),
|
99 |
+
return_special_tokens_mask=kwargs.get('return_special_tokens_mask', False),
|
100 |
+
return_length=kwargs.get('return_length', False),
|
101 |
+
verbose=kwargs.get('verbose', True),
|
102 |
+
)
|
103 |
+
|
104 |
+
def _batch_encode_plus(self, batch_text: List[str], **kwargs) -> BatchEncoding:
|
105 |
+
|
106 |
+
input_ids = [(self.byte_tokenize(text).tolist(), None) for text in batch_text]
|
107 |
+
|
108 |
+
return self._batch_prepare_for_model(
|
109 |
+
input_ids,
|
110 |
+
add_special_tokens=kwargs.get('add_special_tokens', False),
|
111 |
+
padding_strategy=kwargs.get('padding_strategy', PaddingStrategy.DO_NOT_PAD),
|
112 |
+
truncation_strategy=kwargs.get('truncation_strategy', TruncationStrategy.DO_NOT_TRUNCATE),
|
113 |
+
max_length=kwargs.get('max_length'),
|
114 |
+
stride=kwargs.get('stride', 0),
|
115 |
+
pad_to_multiple_of=kwargs.get('pad_to_multiple_of'),
|
116 |
+
return_attention_mask=kwargs.get('return_attention_mask'),
|
117 |
+
return_token_type_ids=kwargs.get('return_token_type_ids'),
|
118 |
+
return_overflowing_tokens=kwargs.get('return_overflowing_tokens', False),
|
119 |
+
return_special_tokens_mask=kwargs.get('return_special_tokens_mask', False),
|
120 |
+
return_length=kwargs.get('return_length', False),
|
121 |
+
return_tensors=kwargs.get('return_tensors'),
|
122 |
+
verbose=kwargs.get('verbose', True),
|
123 |
+
)
|
124 |
+
|
125 |
+
def _save_pretrained(
|
126 |
+
self, save_directory: str | PathLike, file_names: Tuple[str], **kwargs
|
127 |
+
) -> Tuple[str]:
|
128 |
+
|
129 |
+
return file_names
|
tokenizer_config.json
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"byte_level": true,
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"model_max_length": 1000000000000000019884624838656,
|
6 |
+
"padding_side": "left",
|
7 |
+
"tokenizer_class": "ByteTokenizer",
|
8 |
+
"truncation_side": "left"
|
9 |
}
|