File size: 103,809 Bytes
2567aa3 18901fd 2567aa3 a113455 18901fd 2567aa3 18901fd 2567aa3 18901fd 2567aa3 18901fd 2567aa3 18901fd 2567aa3 18901fd 2567aa3 18901fd 2567aa3 a113455 2567aa3 a113455 2567aa3 f4ebffc 18901fd f4ebffc a113455 2567aa3 04fc5b3 bc99f08 18901fd bc99f08 04fc5b3 2567aa3 04fc5b3 2567aa3 4c31724 2567aa3 33bd0db a113455 2567aa3 a113455 72a08f7 18901fd 72a08f7 17cf7e7 2567aa3 f4ebffc 2567aa3 a113455 2567aa3 a113455 18901fd 2567aa3 1cc17fb 2567aa3 5483685 2567aa3 a113455 2567aa3 a113455 2567aa3 c7b41c4 2567aa3 662d3c4 2567aa3 f4ebffc 2db9634 2567aa3 8d57b7c 2567aa3 18901fd 2567aa3 06c178f 2567aa3 033a256 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
# Copyright (c) Alibaba, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on [AnyText: Multilingual Visual Text Generation And Editing](https://huggingface.co/papers/2311.03054).
# Authors: Yuxiang Tuo, Wangmeng Xiang, Jun-Yan He, Yifeng Geng, Xuansong Xie
# Code: https://github.com/tyxsspa/AnyText with Apache-2.0 license
#
# Adapted to Diffusers by [M. Tolga Cangöz](https://github.com/tolgacangoz).
import inspect
import math
import os
import re
import sys
import unicodedata
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import cv2
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from easydict import EasyDict as edict
from frozen_clip_embedder_t3 import FrozenCLIPEmbedderT3
from huggingface_hub import hf_hub_download
from ocr_recog.RecModel import RecModel
from PIL import Image, ImageDraw, ImageFont
from safetensors.torch import load_file
from skimage.transform._geometric import _umeyama as get_sym_mat
from torch import nn
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import (
FromSingleFileMixin,
IPAdapterMixin,
StableDiffusionLoraLoaderMixin,
TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
USE_PEFT_BACKEND,
deprecate,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.constants import HF_MODULES_CACHE
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
class Checker:
def __init__(self):
pass
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF)
or (cp >= 0x20000 and cp <= 0x2A6DF)
or (cp >= 0x2A700 and cp <= 0x2B73F)
or (cp >= 0x2B740 and cp <= 0x2B81F)
or (cp >= 0x2B820 and cp <= 0x2CEAF)
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F)
):
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or self._is_control(char):
continue
if self._is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_control(self, char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat in ("Cc", "Cf"):
return True
return False
def _is_whitespace(self, char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically control characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
checker = Checker()
PLACE_HOLDER = "*"
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from anytext_controlnet import AnyTextControlNetModel
>>> from diffusers import DDIMScheduler
>>> from diffusers.utils import load_image
>>> # I chose a font file shared by an HF staff:
>>> !wget https://huggingface.co/spaces/ysharma/TranslateQuotesInImageForwards/resolve/main/arial-unicode-ms.ttf
>>> # load control net and stable diffusion v1-5
>>> anytext_controlnet = AnyTextControlNetModel.from_pretrained("tolgacangoz/anytext-controlnet", torch_dtype=torch.float16,
... variant="fp16",)
>>> pipe = DiffusionPipeline.from_pretrained("tolgacangoz/anytext", font_path="arial-unicode-ms.ttf",
... controlnet=anytext_controlnet, torch_dtype=torch.float16,
... trust_remote_code=True,
... ).to("cuda")
>>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
>>> # uncomment following line if PyTorch>=2.0 is not installed for memory optimization
>>> #pipe.enable_xformers_memory_efficient_attention()
>>> # uncomment following line if you want to offload the model to CPU for memory optimization
>>> # also remove the `.to("cuda")` part
>>> #pipe.enable_model_cpu_offload()
>>> # generate image
>>> prompt = 'photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream'
>>> draw_pos = load_image("https://raw.githubusercontent.com/tyxsspa/AnyText/refs/heads/main/example_images/gen9.png")
>>> image = pipe(prompt, num_inference_steps=20, mode="generate", draw_pos=draw_pos,
... ).images[0]
>>> image
```
"""
def get_clip_token_for_string(tokenizer, string):
batch_encoding = tokenizer(
string,
truncation=True,
max_length=77,
return_length=True,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
tokens = batch_encoding["input_ids"]
assert (
torch.count_nonzero(tokens - 49407) == 2
), f"String '{string}' maps to more than a single token. Please use another string"
return tokens[0, 1]
def get_recog_emb(encoder, img_list):
_img_list = [(img.repeat(1, 3, 1, 1) * 255)[0] for img in img_list]
encoder.predictor.eval()
_, preds_neck = encoder.pred_imglist(_img_list, show_debug=False)
return preds_neck
class EmbeddingManager(nn.Module):
def __init__(
self,
embedder,
placeholder_string="*",
use_fp16=False,
):
super().__init__()
get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer)
token_dim = 768
self.get_recog_emb = None
self.token_dim = token_dim
self.proj = nn.Linear(40 * 64, token_dim)
proj_dir = hf_hub_download(
repo_id="tolgacangoz/anytext",
filename="text_embedding_module/proj.safetensors",
cache_dir=HF_MODULES_CACHE,
)
self.proj.load_state_dict(load_file(proj_dir, device=str(embedder.device)))
if use_fp16:
self.proj = self.proj.to(dtype=torch.float16)
self.placeholder_token = get_token_for_string(placeholder_string)
@torch.no_grad()
def encode_text(self, text_info):
if self.get_recog_emb is None:
self.get_recog_emb = partial(get_recog_emb, self.recog)
gline_list = []
for i in range(len(text_info["n_lines"])): # sample index in a batch
n_lines = text_info["n_lines"][i]
for j in range(n_lines): # line
gline_list += [text_info["gly_line"][j][i : i + 1]]
if len(gline_list) > 0:
recog_emb = self.get_recog_emb(gline_list)
enc_glyph = self.proj(recog_emb.reshape(recog_emb.shape[0], -1).to(self.proj.weight.dtype))
self.text_embs_all = []
n_idx = 0
for i in range(len(text_info["n_lines"])): # sample index in a batch
n_lines = text_info["n_lines"][i]
text_embs = []
for j in range(n_lines): # line
text_embs += [enc_glyph[n_idx : n_idx + 1]]
n_idx += 1
self.text_embs_all += [text_embs]
@torch.no_grad()
def forward(
self,
tokenized_text,
embedded_text,
):
b, device = tokenized_text.shape[0], tokenized_text.device
for i in range(b):
idx = tokenized_text[i] == self.placeholder_token.to(device)
if sum(idx) > 0:
if i >= len(self.text_embs_all):
print("truncation for log images...")
break
text_emb = torch.cat(self.text_embs_all[i], dim=0)
if sum(idx) != len(text_emb):
print("truncation for long caption...")
text_emb = text_emb.to(embedded_text.device)
embedded_text[i][idx] = text_emb[: sum(idx)]
return embedded_text
def embedding_parameters(self):
return self.parameters()
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
def min_bounding_rect(img):
ret, thresh = cv2.threshold(img, 127, 255, 0)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) == 0:
print("Bad contours, using fake bbox...")
return np.array([[0, 0], [100, 0], [100, 100], [0, 100]])
max_contour = max(contours, key=cv2.contourArea)
rect = cv2.minAreaRect(max_contour)
box = cv2.boxPoints(rect)
box = np.int0(box)
# sort
x_sorted = sorted(box, key=lambda x: x[0])
left = x_sorted[:2]
right = x_sorted[2:]
left = sorted(left, key=lambda x: x[1])
(tl, bl) = left
right = sorted(right, key=lambda x: x[1])
(tr, br) = right
if tl[1] > bl[1]:
(tl, bl) = (bl, tl)
if tr[1] > br[1]:
(tr, br) = (br, tr)
return np.array([tl, tr, br, bl])
def adjust_image(box, img):
pts1 = np.float32([box[0], box[1], box[2], box[3]])
width = max(np.linalg.norm(pts1[0] - pts1[1]), np.linalg.norm(pts1[2] - pts1[3]))
height = max(np.linalg.norm(pts1[0] - pts1[3]), np.linalg.norm(pts1[1] - pts1[2]))
pts2 = np.float32([[0, 0], [width, 0], [width, height], [0, height]])
# get transform matrix
M = get_sym_mat(pts1, pts2, estimate_scale=True)
C, H, W = img.shape
T = np.array([[2 / W, 0, -1], [0, 2 / H, -1], [0, 0, 1]])
theta = np.linalg.inv(T @ M @ np.linalg.inv(T))
theta = torch.from_numpy(theta[:2, :]).unsqueeze(0).type(torch.float32).to(img.device)
grid = F.affine_grid(theta, torch.Size([1, C, H, W]), align_corners=True)
result = F.grid_sample(img.unsqueeze(0), grid, align_corners=True)
result = torch.clamp(result.squeeze(0), 0, 255)
# crop
result = result[:, : int(height), : int(width)]
return result
def crop_image(src_img, mask):
box = min_bounding_rect(mask)
result = adjust_image(box, src_img)
if len(result.shape) == 2:
result = torch.stack([result] * 3, axis=-1)
return result
def create_predictor(model_dir=None, model_lang="ch", device="cpu", use_fp16=False):
if model_dir is None or not os.path.exists(model_dir):
model_dir = hf_hub_download(
repo_id="tolgacangoz/anytext",
filename="text_embedding_module/OCR/ppv3_rec.pth",
cache_dir=HF_MODULES_CACHE,
)
if not os.path.exists(model_dir):
raise ValueError("not find model file path {}".format(model_dir))
if model_lang == "ch":
n_class = 6625
elif model_lang == "en":
n_class = 97
else:
raise ValueError(f"Unsupported OCR recog model_lang: {model_lang}")
rec_config = edict(
in_channels=3,
backbone=edict(type="MobileNetV1Enhance", scale=0.5, last_conv_stride=[1, 2], last_pool_type="avg"),
neck=edict(type="SequenceEncoder", encoder_type="svtr", dims=64, depth=2, hidden_dims=120, use_guide=True),
head=edict(type="CTCHead", fc_decay=0.00001, out_channels=n_class, return_feats=True),
)
rec_model = RecModel(rec_config)
state_dict = torch.load(model_dir, map_location=device)
rec_model.load_state_dict(state_dict)
return rec_model
def _check_image_file(path):
img_end = ("tiff", "tif", "bmp", "rgb", "jpg", "png", "jpeg")
return path.lower().endswith(tuple(img_end))
def get_image_file_list(img_file):
imgs_lists = []
if img_file is None or not os.path.exists(img_file):
raise Exception("not found any img file in {}".format(img_file))
if os.path.isfile(img_file) and _check_image_file(img_file):
imgs_lists.append(img_file)
elif os.path.isdir(img_file):
for single_file in os.listdir(img_file):
file_path = os.path.join(img_file, single_file)
if os.path.isfile(file_path) and _check_image_file(file_path):
imgs_lists.append(file_path)
if len(imgs_lists) == 0:
raise Exception("not found any img file in {}".format(img_file))
imgs_lists = sorted(imgs_lists)
return imgs_lists
class TextRecognizer(object):
def __init__(self, args, predictor):
self.rec_image_shape = [int(v) for v in args["rec_image_shape"].split(",")]
self.rec_batch_num = args["rec_batch_num"]
self.predictor = predictor
self.chars = self.get_char_dict(args["rec_char_dict_path"])
self.char2id = {x: i for i, x in enumerate(self.chars)}
self.is_onnx = not isinstance(self.predictor, torch.nn.Module)
self.use_fp16 = args["use_fp16"]
# img: CHW
def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
assert imgC == img.shape[0]
imgW = int((imgH * max_wh_ratio))
h, w = img.shape[1:]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = torch.nn.functional.interpolate(
img.unsqueeze(0),
size=(imgH, resized_w),
mode="bilinear",
align_corners=True,
)
resized_image /= 255.0
resized_image -= 0.5
resized_image /= 0.5
padding_im = torch.zeros((imgC, imgH, imgW), dtype=torch.float32).to(img.device)
padding_im[:, :, 0:resized_w] = resized_image[0]
return padding_im
# img_list: list of tensors with shape chw 0-255
def pred_imglist(self, img_list, show_debug=False):
img_num = len(img_list)
assert img_num > 0
# Calculate the aspect ratio of all text bars
width_list = []
for img in img_list:
width_list.append(img.shape[2] / float(img.shape[1]))
# Sorting can speed up the recognition process
indices = torch.from_numpy(np.argsort(np.array(width_list)))
batch_num = self.rec_batch_num
preds_all = [None] * img_num
preds_neck_all = [None] * img_num
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
imgC, imgH, imgW = self.rec_image_shape[:3]
max_wh_ratio = imgW / imgH
for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[1:]
if h > w * 1.2:
img = img_list[indices[ino]]
img = torch.transpose(img, 1, 2).flip(dims=[1])
img_list[indices[ino]] = img
h, w = img.shape[1:]
# wh_ratio = w * 1.0 / h
# max_wh_ratio = max(max_wh_ratio, wh_ratio) # comment to not use different ratio
for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio)
if self.use_fp16:
norm_img = norm_img.half()
norm_img = norm_img.unsqueeze(0)
norm_img_batch.append(norm_img)
norm_img_batch = torch.cat(norm_img_batch, dim=0)
if show_debug:
for i in range(len(norm_img_batch)):
_img = norm_img_batch[i].permute(1, 2, 0).detach().cpu().numpy()
_img = (_img + 0.5) * 255
_img = _img[:, :, ::-1]
file_name = f"{indices[beg_img_no + i]}"
if os.path.exists(file_name + ".jpg"):
file_name += "_2" # ori image
cv2.imwrite(file_name + ".jpg", _img)
if self.is_onnx:
input_dict = {}
input_dict[self.predictor.get_inputs()[0].name] = norm_img_batch.detach().cpu().numpy()
outputs = self.predictor.run(None, input_dict)
preds = {}
preds["ctc"] = torch.from_numpy(outputs[0])
preds["ctc_neck"] = [torch.zeros(1)] * img_num
else:
preds = self.predictor(norm_img_batch.to(next(self.predictor.parameters()).device))
for rno in range(preds["ctc"].shape[0]):
preds_all[indices[beg_img_no + rno]] = preds["ctc"][rno]
preds_neck_all[indices[beg_img_no + rno]] = preds["ctc_neck"][rno]
return torch.stack(preds_all, dim=0), torch.stack(preds_neck_all, dim=0)
def get_char_dict(self, character_dict_path):
character_str = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode("utf-8").strip("\n").strip("\r\n")
character_str.append(line)
dict_character = list(character_str)
dict_character = ["sos"] + dict_character + [" "] # eos is space
return dict_character
def get_text(self, order):
char_list = [self.chars[text_id] for text_id in order]
return "".join(char_list)
def decode(self, mat):
text_index = mat.detach().cpu().numpy().argmax(axis=1)
ignored_tokens = [0]
selection = np.ones(len(text_index), dtype=bool)
selection[1:] = text_index[1:] != text_index[:-1]
for ignored_token in ignored_tokens:
selection &= text_index != ignored_token
return text_index[selection], np.where(selection)[0]
def get_ctcloss(self, preds, gt_text, weight):
if not isinstance(weight, torch.Tensor):
weight = torch.tensor(weight).to(preds.device)
ctc_loss = torch.nn.CTCLoss(reduction="none")
log_probs = preds.log_softmax(dim=2).permute(1, 0, 2) # NTC-->TNC
targets = []
target_lengths = []
for t in gt_text:
targets += [self.char2id.get(i, len(self.chars) - 1) for i in t]
target_lengths += [len(t)]
targets = torch.tensor(targets).to(preds.device)
target_lengths = torch.tensor(target_lengths).to(preds.device)
input_lengths = torch.tensor([log_probs.shape[0]] * (log_probs.shape[1])).to(preds.device)
loss = ctc_loss(log_probs, targets, input_lengths, target_lengths)
loss = loss / input_lengths * weight
return loss
class TextEmbeddingModule(nn.Module):
def __init__(self, font_path, use_fp16=False, device="cpu"):
super().__init__()
self.font = ImageFont.truetype(font_path, 60)
self.use_fp16 = use_fp16
self.device = device
self.frozen_CLIP_embedder_t3 = FrozenCLIPEmbedderT3(device=device, use_fp16=use_fp16)
self.embedding_manager = EmbeddingManager(self.frozen_CLIP_embedder_t3, use_fp16=use_fp16)
rec_model_dir = "./text_embedding_module/OCR/ppv3_rec.pth"
self.text_predictor = create_predictor(rec_model_dir, device=device, use_fp16=use_fp16).eval()
args = {}
args["rec_image_shape"] = "3, 48, 320"
args["rec_batch_num"] = 6
args["rec_char_dict_path"] = "./text_embedding_module/OCR/ppocr_keys_v1.txt"
args["rec_char_dict_path"] = hf_hub_download(
repo_id="tolgacangoz/anytext",
filename="text_embedding_module/OCR/ppocr_keys_v1.txt",
cache_dir=HF_MODULES_CACHE,
)
args["use_fp16"] = use_fp16
self.embedding_manager.recog = TextRecognizer(args, self.text_predictor)
@torch.no_grad()
def forward(
self,
prompt,
texts,
negative_prompt,
num_images_per_prompt,
mode,
draw_pos,
sort_priority="↕",
max_chars=77,
revise_pos=False,
h=512,
w=512,
):
if prompt is None and texts is None:
raise ValueError("Prompt or texts must be provided!")
# preprocess pos_imgs(if numpy, make sure it's white pos in black bg)
if draw_pos is None:
pos_imgs = np.zeros((w, h, 1))
if isinstance(draw_pos, PIL.Image.Image):
pos_imgs = np.array(draw_pos)[..., ::-1]
pos_imgs = 255 - pos_imgs
elif isinstance(draw_pos, str):
draw_pos = cv2.imread(draw_pos)[..., ::-1]
if draw_pos is None:
raise ValueError(f"Can't read draw_pos image from {draw_pos}!")
pos_imgs = 255 - draw_pos
elif isinstance(draw_pos, torch.Tensor):
pos_imgs = draw_pos.cpu().numpy()
else:
if not isinstance(draw_pos, np.ndarray):
raise ValueError(f"Unknown format of draw_pos: {type(draw_pos)}")
if mode == "edit":
pos_imgs = cv2.resize(pos_imgs, (w, h))
pos_imgs = pos_imgs[..., 0:1]
pos_imgs = cv2.convertScaleAbs(pos_imgs)
_, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY)
# separate pos_imgs
pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority)
if len(pos_imgs) == 0:
pos_imgs = [np.zeros((h, w, 1))]
n_lines = len(texts)
if len(pos_imgs) < n_lines:
if n_lines == 1 and texts[0] == " ":
pass # text-to-image without text
else:
raise ValueError(
f"Found {len(pos_imgs)} positions that < needed {n_lines} from prompt, check and try again!"
)
elif len(pos_imgs) > n_lines:
str_warning = f"Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt."
logger.warning(str_warning)
# get pre_pos, poly_list, hint that needed for anytext
pre_pos = []
poly_list = []
for input_pos in pos_imgs:
if input_pos.mean() != 0:
input_pos = input_pos[..., np.newaxis] if len(input_pos.shape) == 2 else input_pos
poly, pos_img = self.find_polygon(input_pos)
pre_pos += [pos_img / 255.0]
poly_list += [poly]
else:
pre_pos += [np.zeros((h, w, 1))]
poly_list += [None]
np_hint = np.sum(pre_pos, axis=0).clip(0, 1)
# prepare info dict
text_info = {}
text_info["glyphs"] = []
text_info["gly_line"] = []
text_info["positions"] = []
text_info["n_lines"] = [len(texts)] * num_images_per_prompt
for i in range(len(texts)):
text = texts[i]
if len(text) > max_chars:
str_warning = f'"{text}" length > max_chars: {max_chars}, will be cut off...'
logger.warning(str_warning)
text = text[:max_chars]
gly_scale = 2
if pre_pos[i].mean() != 0:
gly_line = self.draw_glyph(self.font, text)
glyphs = self.draw_glyph2(
self.font, text, poly_list[i], scale=gly_scale, width=w, height=h, add_space=False
)
if revise_pos:
resize_gly = cv2.resize(glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0]))
new_pos = cv2.morphologyEx(
(resize_gly * 255).astype(np.uint8),
cv2.MORPH_CLOSE,
kernel=np.ones((resize_gly.shape[0] // 10, resize_gly.shape[1] // 10), dtype=np.uint8),
iterations=1,
)
new_pos = new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos
contours, _ = cv2.findContours(new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
if len(contours) != 1:
str_warning = f"Fail to revise position {i} to bounding rect, remain position unchanged..."
logger.warning(str_warning)
else:
rect = cv2.minAreaRect(contours[0])
poly = np.int0(cv2.boxPoints(rect))
pre_pos[i] = cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255.0
else:
glyphs = np.zeros((h * gly_scale, w * gly_scale, 1))
gly_line = np.zeros((80, 512, 1))
pos = pre_pos[i]
text_info["glyphs"] += [self.arr2tensor(glyphs, num_images_per_prompt)]
text_info["gly_line"] += [self.arr2tensor(gly_line, num_images_per_prompt)]
text_info["positions"] += [self.arr2tensor(pos, num_images_per_prompt)]
# hint = self.arr2tensor(np_hint, len(prompt))
self.embedding_manager.encode_text(text_info)
prompt_embeds = self.frozen_CLIP_embedder_t3.encode([prompt], embedding_manager=self.embedding_manager)
self.embedding_manager.encode_text(text_info)
negative_prompt_embeds = self.frozen_CLIP_embedder_t3.encode(
[negative_prompt or ""], embedding_manager=self.embedding_manager
)
return prompt_embeds, negative_prompt_embeds, text_info, np_hint
def arr2tensor(self, arr, bs):
arr = np.transpose(arr, (2, 0, 1))
_arr = torch.from_numpy(arr.copy()).float().cpu()
if self.use_fp16:
_arr = _arr.half()
_arr = torch.stack([_arr for _ in range(bs)], dim=0)
return _arr
def separate_pos_imgs(self, img, sort_priority, gap=102):
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img)
components = []
for label in range(1, num_labels):
component = np.zeros_like(img)
component[labels == label] = 255
components.append((component, centroids[label]))
if sort_priority == "↕":
fir, sec = 1, 0 # top-down first
elif sort_priority == "↔":
fir, sec = 0, 1 # left-right first
else:
raise ValueError(f"Unknown sort_priority: {sort_priority}")
components.sort(key=lambda c: (c[1][fir] // gap, c[1][sec] // gap))
sorted_components = [c[0] for c in components]
return sorted_components
def find_polygon(self, image, min_rect=False):
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
max_contour = max(contours, key=cv2.contourArea) # get contour with max area
if min_rect:
# get minimum enclosing rectangle
rect = cv2.minAreaRect(max_contour)
poly = np.int0(cv2.boxPoints(rect))
else:
# get approximate polygon
epsilon = 0.01 * cv2.arcLength(max_contour, True)
poly = cv2.approxPolyDP(max_contour, epsilon, True)
n, _, xy = poly.shape
poly = poly.reshape(n, xy)
cv2.drawContours(image, [poly], -1, 255, -1)
return poly, image
def draw_glyph(self, font, text):
g_size = 50
W, H = (512, 80)
new_font = font.font_variant(size=g_size)
img = Image.new(mode="1", size=(W, H), color=0)
draw = ImageDraw.Draw(img)
left, top, right, bottom = new_font.getbbox(text)
text_width = max(right - left, 5)
text_height = max(bottom - top, 5)
ratio = min(W * 0.9 / text_width, H * 0.9 / text_height)
new_font = font.font_variant(size=int(g_size * ratio))
left, top, right, bottom = new_font.getbbox(text)
text_width = right - left
text_height = bottom - top
x = (img.width - text_width) // 2
y = (img.height - text_height) // 2 - top // 2
draw.text((x, y), text, font=new_font, fill="white")
img = np.expand_dims(np.array(img), axis=2).astype(np.float64)
return img
def draw_glyph2(self, font, text, polygon, vertAng=10, scale=1, width=512, height=512, add_space=True):
enlarge_polygon = polygon * scale
rect = cv2.minAreaRect(enlarge_polygon)
box = cv2.boxPoints(rect)
box = np.int0(box)
w, h = rect[1]
angle = rect[2]
if angle < -45:
angle += 90
angle = -angle
if w < h:
angle += 90
vert = False
if abs(angle) % 90 < vertAng or abs(90 - abs(angle) % 90) % 90 < vertAng:
_w = max(box[:, 0]) - min(box[:, 0])
_h = max(box[:, 1]) - min(box[:, 1])
if _h >= _w:
vert = True
angle = 0
img = np.zeros((height * scale, width * scale, 3), np.uint8)
img = Image.fromarray(img)
# infer font size
image4ratio = Image.new("RGB", img.size, "white")
draw = ImageDraw.Draw(image4ratio)
_, _, _tw, _th = draw.textbbox(xy=(0, 0), text=text, font=font)
text_w = min(w, h) * (_tw / _th)
if text_w <= max(w, h):
# add space
if len(text) > 1 and not vert and add_space:
for i in range(1, 100):
text_space = self.insert_spaces(text, i)
_, _, _tw2, _th2 = draw.textbbox(xy=(0, 0), text=text_space, font=font)
if min(w, h) * (_tw2 / _th2) > max(w, h):
break
text = self.insert_spaces(text, i - 1)
font_size = min(w, h) * 0.80
else:
shrink = 0.75 if vert else 0.85
font_size = min(w, h) / (text_w / max(w, h)) * shrink
new_font = font.font_variant(size=int(font_size))
left, top, right, bottom = new_font.getbbox(text)
text_width = right - left
text_height = bottom - top
layer = Image.new("RGBA", img.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(layer)
if not vert:
draw.text(
(rect[0][0] - text_width // 2, rect[0][1] - text_height // 2 - top),
text,
font=new_font,
fill=(255, 255, 255, 255),
)
else:
x_s = min(box[:, 0]) + _w // 2 - text_height // 2
y_s = min(box[:, 1])
for c in text:
draw.text((x_s, y_s), c, font=new_font, fill=(255, 255, 255, 255))
_, _t, _, _b = new_font.getbbox(c)
y_s += _b
rotated_layer = layer.rotate(angle, expand=1, center=(rect[0][0], rect[0][1]))
x_offset = int((img.width - rotated_layer.width) / 2)
y_offset = int((img.height - rotated_layer.height) / 2)
img.paste(rotated_layer, (x_offset, y_offset), rotated_layer)
img = np.expand_dims(np.array(img.convert("1")), axis=2).astype(np.float64)
return img
def insert_spaces(self, string, nSpace):
if nSpace == 0:
return string
new_string = ""
for char in string:
new_string += char + " " * nSpace
return new_string[:-nSpace]
def to(self, *args, **kwargs):
self.frozen_CLIP_embedder_t3 = self.frozen_CLIP_embedder_t3.to(*args, **kwargs)
self.embedding_manager = self.embedding_manager.to(*args, **kwargs)
self.text_predictor = self.text_predictor.to(*args, **kwargs)
self.device = self.frozen_CLIP_embedder_t3.device
return self
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
class AuxiliaryLatentModule(nn.Module):
def __init__(
self,
font_path,
vae=None,
device="cpu",
use_fp16=False,
):
super().__init__()
self.font = ImageFont.truetype(font_path, 60)
self.use_fp16 = use_fp16
self.device = device
self.vae = vae.eval() if vae is not None else None
@torch.no_grad()
def forward(
self,
text_info,
mode,
draw_pos,
ori_image,
num_images_per_prompt,
np_hint,
h=512,
w=512,
):
if mode == "generate":
edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image
elif mode == "edit":
if draw_pos is None or ori_image is None:
raise ValueError("Reference image and position image are needed for text editing!")
if isinstance(ori_image, str):
ori_image = cv2.imread(ori_image)[..., ::-1]
if ori_image is None:
raise ValueError(f"Can't read ori_image image from {ori_image}!")
elif isinstance(ori_image, torch.Tensor):
ori_image = ori_image.cpu().numpy()
else:
if not isinstance(ori_image, np.ndarray):
raise ValueError(f"Unknown format of ori_image: {type(ori_image)}")
edit_image = ori_image.clip(1, 255) # for mask reason
edit_image = self.check_channels(edit_image)
edit_image = self.resize_image(
edit_image, max_length=768
) # make w h multiple of 64, resize if w or h > max_length
# get masked_x
masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0) * (1 - np_hint)
masked_img = np.transpose(masked_img, (2, 0, 1))
device = next(self.vae.parameters()).device
masked_img = torch.from_numpy(masked_img.copy()).float().to(device)
if self.use_fp16:
masked_img = masked_img.half()
masked_x = (retrieve_latents(self.vae.encode(masked_img[None, ...])) * self.vae.config.scaling_factor).detach()
if self.use_fp16:
masked_x = masked_x.half()
text_info["masked_x"] = torch.cat([masked_x for _ in range(num_images_per_prompt)], dim=0)
glyphs = torch.cat(text_info["glyphs"], dim=1).sum(dim=1, keepdim=True)
positions = torch.cat(text_info["positions"], dim=1).sum(dim=1, keepdim=True)
return glyphs, positions, text_info
def check_channels(self, image):
channels = image.shape[2] if len(image.shape) == 3 else 1
if channels == 1:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
elif channels > 3:
image = image[:, :, :3]
return image
def resize_image(self, img, max_length=768):
height, width = img.shape[:2]
max_dimension = max(height, width)
if max_dimension > max_length:
scale_factor = max_length / max_dimension
new_width = int(round(width * scale_factor))
new_height = int(round(height * scale_factor))
new_size = (new_width, new_height)
img = cv2.resize(img, new_size)
height, width = img.shape[:2]
img = cv2.resize(img, (width - (width % 64), height - (height % 64)))
return img
def insert_spaces(self, string, nSpace):
if nSpace == 0:
return string
new_string = ""
for char in string:
new_string += char + " " * nSpace
return new_string[:-nSpace]
def to(self, *args, **kwargs):
self.vae = self.vae.to(*args, **kwargs)
self.device = self.vae.device
return self
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class AnyTextPipeline(
DiffusionPipeline,
StableDiffusionMixin,
TextualInversionLoaderMixin,
StableDiffusionLoraLoaderMixin,
IPAdapterMixin,
FromSingleFileMixin,
):
r"""
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
unet ([`UNet2DConditionModel`]):
A `UNet2DConditionModel` to denoise the encoded image latents.
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
additional conditioning.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
"""
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
_exclude_from_cpu_offload = ["safety_checker"]
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
def __init__(
self,
font_path: str,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
trust_remote_code: bool = False,
text_embedding_module: TextEmbeddingModule = None,
auxiliary_latent_module: AuxiliaryLatentModule = None,
image_encoder: CLIPVisionModelWithProjection = None,
requires_safety_checker: bool = True,
):
super().__init__()
self.text_embedding_module = TextEmbeddingModule(
use_fp16=unet.dtype == torch.float16, device=unet.device, font_path=font_path
)
self.auxiliary_latent_module = AuxiliaryLatentModule(
vae=vae, use_fp16=unet.dtype == torch.float16, device=unet.device, font_path=font_path
)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
if isinstance(controlnet, (list, tuple)):
controlnet = MultiControlNetModel(controlnet)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
text_embedding_module=self.text_embedding_module,
auxiliary_latent_module=self.auxiliary_latent_module,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
)
self.register_to_config(requires_safety_checker=requires_safety_checker, font_path=font_path)
def modify_prompt(self, prompt):
prompt = prompt.replace("“", '"')
prompt = prompt.replace("”", '"')
p = '"(.*?)"'
strs = re.findall(p, prompt)
if len(strs) == 0:
strs = [" "]
else:
for s in strs:
prompt = prompt.replace(f'"{s}"', f" {PLACE_HOLDER} ", 1)
if self.is_chinese(prompt):
if self.trans_pipe is None:
return None, None
old_prompt = prompt
prompt = self.trans_pipe(input=prompt + " .")["translation"][:-1]
print(f"Translate: {old_prompt} --> {prompt}")
return prompt, strs
def is_chinese(self, text):
text = checker._clean_text(text)
for char in text:
cp = ord(char)
if checker._is_chinese_char(cp):
return True
return False
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
lora_scale: Optional[float] = None,
**kwargs,
):
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
prompt_embeds_tuple = self.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=lora_scale,
**kwargs,
)
# concatenate for backwards comp
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
return prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
def encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
else:
scale_lora_layers(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# textual inversion: process multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
if clip_skip is None:
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
prompt_embeds = prompt_embeds[0]
else:
prompt_embeds = self.text_encoder(
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
)
# Access the `hidden_states` first, that contains a tuple of
# all the hidden states from the encoder layers. Then index into
# the tuple to access the hidden states from the desired layer.
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
# We also need to apply the final LayerNorm here to not mess with the
# representations. The `last_hidden_states` that we typically use for
# obtaining the final prompt representations passes through the LayerNorm
# layer.
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
# textual inversion: process multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
if self.text_encoder is not None:
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
return prompt_embeds, negative_prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.feature_extractor(image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=dtype)
if output_hidden_states:
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
uncond_image_enc_hidden_states = self.image_encoder(
torch.zeros_like(image), output_hidden_states=True
).hidden_states[-2]
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
num_images_per_prompt, dim=0
)
return image_enc_hidden_states, uncond_image_enc_hidden_states
else:
image_embeds = self.image_encoder(image).image_embeds
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
uncond_image_embeds = torch.zeros_like(image_embeds)
return image_embeds, uncond_image_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
def prepare_ip_adapter_image_embeds(
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
):
image_embeds = []
if do_classifier_free_guidance:
negative_image_embeds = []
if ip_adapter_image_embeds is None:
if not isinstance(ip_adapter_image, list):
ip_adapter_image = [ip_adapter_image]
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
raise ValueError(
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
)
for single_ip_adapter_image, image_proj_layer in zip(
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
):
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
single_image_embeds, single_negative_image_embeds = self.encode_image(
single_ip_adapter_image, device, 1, output_hidden_state
)
image_embeds.append(single_image_embeds[None, :])
if do_classifier_free_guidance:
negative_image_embeds.append(single_negative_image_embeds[None, :])
else:
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
negative_image_embeds.append(single_negative_image_embeds)
image_embeds.append(single_image_embeds)
ip_adapter_image_embeds = []
for i, single_image_embeds in enumerate(image_embeds):
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
single_image_embeds = single_image_embeds.to(device=device)
ip_adapter_image_embeds.append(single_image_embeds)
return ip_adapter_image_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
# image,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
ip_adapter_image=None,
ip_adapter_image_embeds=None,
controlnet_conditioning_scale=1.0,
control_guidance_start=0.0,
control_guidance_end=1.0,
callback_on_step_end_tensor_inputs=None,
):
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
# Check `image`
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
)
# Check `controlnet_conditioning_scale`
if (
isinstance(self.controlnet, ControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetModel)
):
if not isinstance(controlnet_conditioning_scale, float):
print(controlnet_conditioning_scale)
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
elif (
isinstance(self.controlnet, MultiControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
):
if isinstance(controlnet_conditioning_scale, list):
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
raise ValueError(
"A single batch of varying conditioning scale settings (e.g. [[1.0, 0.5], [0.2, 0.8]]) is not supported at the moment. "
"The conditioning scale must be fixed across the batch."
)
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
self.controlnet.nets
):
raise ValueError(
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
" the same length as the number of controlnets"
)
else:
assert False
if not isinstance(control_guidance_start, (tuple, list)):
control_guidance_start = [control_guidance_start]
if not isinstance(control_guidance_end, (tuple, list)):
control_guidance_end = [control_guidance_end]
if len(control_guidance_start) != len(control_guidance_end):
raise ValueError(
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
)
if isinstance(self.controlnet, MultiControlNetModel):
if len(control_guidance_start) != len(self.controlnet.nets):
raise ValueError(
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
)
for start, end in zip(control_guidance_start, control_guidance_end):
if start >= end:
raise ValueError(
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
)
if start < 0.0:
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
if end > 1.0:
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
raise ValueError(
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
)
if ip_adapter_image_embeds is not None:
if not isinstance(ip_adapter_image_embeds, list):
raise ValueError(
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
)
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
raise ValueError(
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
)
def check_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_np = isinstance(image, np.ndarray)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
if (
not image_is_pil
and not image_is_tensor
and not image_is_np
and not image_is_pil_list
and not image_is_tensor_list
and not image_is_np_list
):
raise TypeError(
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
)
if image_is_pil:
image_batch_size = 1
else:
image_batch_size = len(image)
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
)
def prepare_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
) -> torch.Tensor:
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
w (`torch.Tensor`):
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
embedding_dim (`int`, *optional*, defaults to 512):
Dimension of the embeddings to generate.
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
Data type of the generated embeddings.
Returns:
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
@property
def guidance_scale(self):
return self._guidance_scale
@property
def clip_skip(self):
return self._clip_skip
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
@property
def cross_attention_kwargs(self):
return self._cross_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
mode: Optional[str] = "generate",
draw_pos: Optional[Union[str, torch.Tensor]] = None,
ori_image: Optional[Union[str, torch.Tensor]] = None,
timesteps: List[int] = None,
sigmas: List[float] = None,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
images must be passed as a list such that each element of the list can be correctly batched for input
to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single
ControlNet, each will be paired with each prompt in the `prompt` list. This also applies to multiple
ControlNets, where a list of image lists can be passed to batch for each prompt and each ControlNet.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
provided, embeddings are computed from the `ip_adapter_image` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
the corresponding scale as a list.
guess_mode (`bool`, *optional*, defaults to `False`):
The ControlNet encoder tries to recognize the content of the input image even if you remove all
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
The percentage of total steps at which the ControlNet starts applying.
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
The percentage of total steps at which the ControlNet stops applying.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = (
mult * [control_guidance_start],
mult * [control_guidance_end],
)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
# image,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
ip_adapter_image,
ip_adapter_image_embeds,
controlnet_conditioning_scale,
control_guidance_start,
control_guidance_end,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
global_pool_conditions = (
controlnet.config.global_pool_conditions
if isinstance(controlnet, ControlNetModel)
else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = guess_mode or global_pool_conditions
prompt, texts = self.modify_prompt(prompt)
# 3. Encode input prompt
text_encoder_lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
draw_pos = draw_pos.to(device=device) if isinstance(draw_pos, torch.Tensor) else draw_pos
prompt_embeds, negative_prompt_embeds, text_info, np_hint = self.text_embedding_module(
prompt,
texts,
negative_prompt,
num_images_per_prompt,
mode,
draw_pos,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
)
# 3.5 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
# 4. Prepare image
if isinstance(controlnet, ControlNetModel):
# image = self.prepare_image(
# image=image,
# width=width,
# height=height,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
# device=device,
# dtype=controlnet.dtype,
# do_classifier_free_guidance=self.do_classifier_free_guidance,
# guess_mode=guess_mode,
# )
# height, width = image.shape[-2:]
guided_hint = self.auxiliary_latent_module(
text_info=text_info,
mode=mode,
draw_pos=draw_pos,
ori_image=ori_image,
num_images_per_prompt=num_images_per_prompt,
np_hint=np_hint,
)
height, width = 512, 512
# elif isinstance(controlnet, MultiControlNetModel):
# images = []
# # Nested lists as ControlNet condition
# if isinstance(image[0], list):
# # Transpose the nested image list
# image = [list(t) for t in zip(*image)]
# for image_ in image:
# image_ = self.prepare_image(
# image=image_,
# width=width,
# height=height,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
# device=device,
# dtype=controlnet.dtype,
# do_classifier_free_guidance=self.do_classifier_free_guidance,
# guess_mode=guess_mode,
# )
# images.append(image_)
# image = images
# height, width = image[0].shape[-2:]
else:
assert False
# 5. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas
)
self._num_timesteps = len(timesteps)
# 6. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7.1 Add image embeds for IP-Adapter
added_cond_kwargs = (
{"image_embeds": image_embeds}
if ip_adapter_image is not None or ip_adapter_image_embeds is not None
else None
)
# 7.2 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
is_unet_compiled = is_compiled_module(self.unet)
is_controlnet_compiled = is_compiled_module(self.controlnet)
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# Relevant thread:
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
torch._inductor.cudagraph_mark_step_begin()
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# controlnet(s) inference
if guess_mode and self.do_classifier_free_guidance:
# Infer ControlNet only for the conditional batch.
control_model_input = latents
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
else:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
down_block_res_samples, mid_block_res_sample = self.controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=guided_hint,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
return_dict=False,
)
if guess_mode and self.do_classifier_free_guidance:
# Inferred ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# If we do sequential model offloading, let's offload unet and controlnet
# manually for max memory savings
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.unet.to("cpu")
self.controlnet.to("cpu")
torch.cuda.empty_cache()
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
0
]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def to(self, *args, **kwargs):
super().to(*args, **kwargs)
self.text_embedding_module.to(*args, **kwargs)
self.auxiliary_latent_module.to(*args, **kwargs)
return self
|