|
from torch import nn |
|
|
|
|
|
class CTCHead(nn.Module): |
|
def __init__( |
|
self, in_channels, out_channels=6625, fc_decay=0.0004, mid_channels=None, return_feats=False, **kwargs |
|
): |
|
super(CTCHead, self).__init__() |
|
if mid_channels is None: |
|
self.fc = nn.Linear( |
|
in_channels, |
|
out_channels, |
|
bias=True, |
|
) |
|
else: |
|
self.fc1 = nn.Linear( |
|
in_channels, |
|
mid_channels, |
|
bias=True, |
|
) |
|
self.fc2 = nn.Linear( |
|
mid_channels, |
|
out_channels, |
|
bias=True, |
|
) |
|
|
|
self.out_channels = out_channels |
|
self.mid_channels = mid_channels |
|
self.return_feats = return_feats |
|
|
|
def forward(self, x, labels=None): |
|
if self.mid_channels is None: |
|
predicts = self.fc(x) |
|
else: |
|
x = self.fc1(x) |
|
predicts = self.fc2(x) |
|
|
|
if self.return_feats: |
|
result = {} |
|
result["ctc"] = predicts |
|
result["ctc_neck"] = x |
|
else: |
|
result = predicts |
|
|
|
return result |
|
|