Text-to-Image
Diffusers
Safetensors
tolgacangoz's picture
Upload 7 files
2e73038 verified
raw
history blame
2.19 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
class Hswish(nn.Module):
def __init__(self, inplace=True):
super(Hswish, self).__init__()
self.inplace = inplace
def forward(self, x):
return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0
# out = max(0, min(1, slop*x+offset))
# paddle.fluid.layers.hard_sigmoid(x, slope=0.2, offset=0.5, name=None)
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(Hsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
# torch: F.relu6(x + 3., inplace=self.inplace) / 6.
# paddle: F.relu6(1.2 * x + 3., inplace=self.inplace) / 6.
return F.relu6(1.2 * x + 3.0, inplace=self.inplace) / 6.0
class GELU(nn.Module):
def __init__(self, inplace=True):
super(GELU, self).__init__()
self.inplace = inplace
def forward(self, x):
return torch.nn.functional.gelu(x)
class Swish(nn.Module):
def __init__(self, inplace=True):
super(Swish, self).__init__()
self.inplace = inplace
def forward(self, x):
if self.inplace:
x.mul_(torch.sigmoid(x))
return x
else:
return x * torch.sigmoid(x)
class Activation(nn.Module):
def __init__(self, act_type, inplace=True):
super(Activation, self).__init__()
act_type = act_type.lower()
if act_type == "relu":
self.act = nn.ReLU(inplace=inplace)
elif act_type == "relu6":
self.act = nn.ReLU6(inplace=inplace)
elif act_type == "sigmoid":
raise NotImplementedError
elif act_type == "hard_sigmoid":
self.act = Hsigmoid(inplace)
elif act_type == "hard_swish":
self.act = Hswish(inplace=inplace)
elif act_type == "leakyrelu":
self.act = nn.LeakyReLU(inplace=inplace)
elif act_type == "gelu":
self.act = GELU(inplace=inplace)
elif act_type == "swish":
self.act = Swish(inplace=inplace)
else:
raise NotImplementedError
def forward(self, inputs):
return self.act(inputs)