Upload frozen_clip_embedder_t3.py
Browse files
text_embedding_module/frozen_clip_embedder_t3.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
4 |
+
from transformers.modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
|
5 |
+
|
6 |
+
|
7 |
+
class AbstractEncoder(nn.Module):
|
8 |
+
def __init__(self):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
def encode(self, *args, **kwargs):
|
12 |
+
raise NotImplementedError
|
13 |
+
|
14 |
+
|
15 |
+
class FrozenCLIPEmbedderT3(AbstractEncoder):
|
16 |
+
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
17 |
+
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
version="openai/clip-vit-large-patch14",
|
21 |
+
device="cpu",
|
22 |
+
max_length=77,
|
23 |
+
freeze=True,
|
24 |
+
use_fp16=False,
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
28 |
+
self.transformer = CLIPTextModel.from_pretrained(
|
29 |
+
version, use_safetensors=True, torch_dtype=torch.float16 if use_fp16 else torch.float32
|
30 |
+
).to(device)
|
31 |
+
self.device = device
|
32 |
+
self.max_length = max_length
|
33 |
+
if freeze:
|
34 |
+
self.freeze()
|
35 |
+
|
36 |
+
def embedding_forward(
|
37 |
+
self,
|
38 |
+
input_ids=None,
|
39 |
+
position_ids=None,
|
40 |
+
inputs_embeds=None,
|
41 |
+
embedding_manager=None,
|
42 |
+
):
|
43 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
44 |
+
if position_ids is None:
|
45 |
+
position_ids = self.position_ids[:, :seq_length]
|
46 |
+
if inputs_embeds is None:
|
47 |
+
inputs_embeds = self.token_embedding(input_ids)
|
48 |
+
if embedding_manager is not None:
|
49 |
+
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
|
50 |
+
position_embeddings = self.position_embedding(position_ids)
|
51 |
+
embeddings = inputs_embeds + position_embeddings
|
52 |
+
return embeddings
|
53 |
+
|
54 |
+
self.transformer.text_model.embeddings.forward = embedding_forward.__get__(
|
55 |
+
self.transformer.text_model.embeddings
|
56 |
+
)
|
57 |
+
|
58 |
+
def encoder_forward(
|
59 |
+
self,
|
60 |
+
inputs_embeds,
|
61 |
+
attention_mask=None,
|
62 |
+
causal_attention_mask=None,
|
63 |
+
output_attentions=None,
|
64 |
+
output_hidden_states=None,
|
65 |
+
return_dict=None,
|
66 |
+
):
|
67 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
68 |
+
output_hidden_states = (
|
69 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
70 |
+
)
|
71 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
72 |
+
encoder_states = () if output_hidden_states else None
|
73 |
+
all_attentions = () if output_attentions else None
|
74 |
+
hidden_states = inputs_embeds
|
75 |
+
for idx, encoder_layer in enumerate(self.layers):
|
76 |
+
if output_hidden_states:
|
77 |
+
encoder_states = encoder_states + (hidden_states,)
|
78 |
+
layer_outputs = encoder_layer(
|
79 |
+
hidden_states,
|
80 |
+
attention_mask,
|
81 |
+
causal_attention_mask,
|
82 |
+
output_attentions=output_attentions,
|
83 |
+
)
|
84 |
+
hidden_states = layer_outputs[0]
|
85 |
+
if output_attentions:
|
86 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
87 |
+
if output_hidden_states:
|
88 |
+
encoder_states = encoder_states + (hidden_states,)
|
89 |
+
return hidden_states
|
90 |
+
|
91 |
+
self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder)
|
92 |
+
|
93 |
+
def text_encoder_forward(
|
94 |
+
self,
|
95 |
+
input_ids=None,
|
96 |
+
attention_mask=None,
|
97 |
+
position_ids=None,
|
98 |
+
output_attentions=None,
|
99 |
+
output_hidden_states=None,
|
100 |
+
return_dict=None,
|
101 |
+
embedding_manager=None,
|
102 |
+
):
|
103 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
104 |
+
output_hidden_states = (
|
105 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
106 |
+
)
|
107 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
108 |
+
if input_ids is None:
|
109 |
+
raise ValueError("You have to specify either input_ids")
|
110 |
+
input_shape = input_ids.size()
|
111 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
112 |
+
hidden_states = self.embeddings(
|
113 |
+
input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager
|
114 |
+
)
|
115 |
+
# CLIP's text model uses causal mask, prepare it here.
|
116 |
+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
117 |
+
causal_attention_mask = _create_4d_causal_attention_mask(
|
118 |
+
input_shape, hidden_states.dtype, device=hidden_states.device
|
119 |
+
)
|
120 |
+
# expand attention_mask
|
121 |
+
if attention_mask is not None:
|
122 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
123 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
124 |
+
last_hidden_state = self.encoder(
|
125 |
+
inputs_embeds=hidden_states,
|
126 |
+
attention_mask=attention_mask,
|
127 |
+
causal_attention_mask=causal_attention_mask,
|
128 |
+
output_attentions=output_attentions,
|
129 |
+
output_hidden_states=output_hidden_states,
|
130 |
+
return_dict=return_dict,
|
131 |
+
)
|
132 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
133 |
+
return last_hidden_state
|
134 |
+
|
135 |
+
self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model)
|
136 |
+
|
137 |
+
def transformer_forward(
|
138 |
+
self,
|
139 |
+
input_ids=None,
|
140 |
+
attention_mask=None,
|
141 |
+
position_ids=None,
|
142 |
+
output_attentions=None,
|
143 |
+
output_hidden_states=None,
|
144 |
+
return_dict=None,
|
145 |
+
embedding_manager=None,
|
146 |
+
):
|
147 |
+
return self.text_model(
|
148 |
+
input_ids=input_ids,
|
149 |
+
attention_mask=attention_mask,
|
150 |
+
position_ids=position_ids,
|
151 |
+
output_attentions=output_attentions,
|
152 |
+
output_hidden_states=output_hidden_states,
|
153 |
+
return_dict=return_dict,
|
154 |
+
embedding_manager=embedding_manager,
|
155 |
+
)
|
156 |
+
|
157 |
+
self.transformer.forward = transformer_forward.__get__(self.transformer)
|
158 |
+
|
159 |
+
def freeze(self):
|
160 |
+
self.transformer = self.transformer.eval()
|
161 |
+
for param in self.parameters():
|
162 |
+
param.requires_grad = False
|
163 |
+
|
164 |
+
def forward(self, text, **kwargs):
|
165 |
+
batch_encoding = self.tokenizer(
|
166 |
+
text,
|
167 |
+
truncation=False,
|
168 |
+
max_length=self.max_length,
|
169 |
+
return_length=True,
|
170 |
+
return_overflowing_tokens=False,
|
171 |
+
padding="longest",
|
172 |
+
return_tensors="pt",
|
173 |
+
)
|
174 |
+
input_ids = batch_encoding["input_ids"]
|
175 |
+
tokens_list = self.split_chunks(input_ids)
|
176 |
+
z_list = []
|
177 |
+
for tokens in tokens_list:
|
178 |
+
tokens = tokens.to(self.device)
|
179 |
+
_z = self.transformer(input_ids=tokens, **kwargs)
|
180 |
+
z_list += [_z]
|
181 |
+
return torch.cat(z_list, dim=1)
|
182 |
+
|
183 |
+
def encode(self, text, **kwargs):
|
184 |
+
return self(text, **kwargs)
|
185 |
+
|
186 |
+
def split_chunks(self, input_ids, chunk_size=75):
|
187 |
+
tokens_list = []
|
188 |
+
bs, n = input_ids.shape
|
189 |
+
id_start = input_ids[:, 0].unsqueeze(1) # dim --> [bs, 1]
|
190 |
+
id_end = input_ids[:, -1].unsqueeze(1)
|
191 |
+
if n == 2: # empty caption
|
192 |
+
tokens_list.append(torch.cat((id_start,) + (id_end,) * (chunk_size + 1), dim=1))
|
193 |
+
|
194 |
+
trimmed_encoding = input_ids[:, 1:-1]
|
195 |
+
num_full_groups = (n - 2) // chunk_size
|
196 |
+
|
197 |
+
for i in range(num_full_groups):
|
198 |
+
group = trimmed_encoding[:, i * chunk_size : (i + 1) * chunk_size]
|
199 |
+
group_pad = torch.cat((id_start, group, id_end), dim=1)
|
200 |
+
tokens_list.append(group_pad)
|
201 |
+
|
202 |
+
remaining_columns = (n - 2) % chunk_size
|
203 |
+
if remaining_columns > 0:
|
204 |
+
remaining_group = trimmed_encoding[:, -remaining_columns:]
|
205 |
+
padding_columns = chunk_size - remaining_group.shape[1]
|
206 |
+
padding = id_end.expand(bs, padding_columns)
|
207 |
+
remaining_group_pad = torch.cat((id_start, remaining_group, padding, id_end), dim=1)
|
208 |
+
tokens_list.append(remaining_group_pad)
|
209 |
+
return tokens_list
|
210 |
+
|
211 |
+
def to(self, *args, **kwargs):
|
212 |
+
self.transformer = self.transformer.to(*args, **kwargs)
|
213 |
+
self.device = self.transformer.device
|
214 |
+
return self
|