Upload anytext.py
Browse files- auxiliary_latent_module/anytext.py +131 -34
auxiliary_latent_module/anytext.py
CHANGED
@@ -25,6 +25,7 @@ import math
|
|
25 |
import os
|
26 |
import re
|
27 |
import sys
|
|
|
28 |
from functools import partial
|
29 |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
30 |
|
@@ -33,9 +34,9 @@ import numpy as np
|
|
33 |
import PIL.Image
|
34 |
import torch
|
35 |
import torch.nn.functional as F
|
36 |
-
from bert_tokenizer import BasicTokenizer
|
37 |
from easydict import EasyDict as edict
|
38 |
from frozen_clip_embedder_t3 import FrozenCLIPEmbedderT3
|
|
|
39 |
from ocr_recog.RecModel import RecModel
|
40 |
from PIL import Image, ImageDraw, ImageFont
|
41 |
from safetensors.torch import load_file
|
@@ -66,12 +67,75 @@ from diffusers.utils import (
|
|
66 |
scale_lora_layers,
|
67 |
unscale_lora_layers,
|
68 |
)
|
|
|
69 |
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
70 |
-
from diffusers.configuration_utils import register_to_config, ConfigMixin
|
71 |
-
from diffusers.models.modeling_utils import ModelMixin
|
72 |
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
|
77 |
PLACE_HOLDER = "*"
|
@@ -81,18 +145,22 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
81 |
EXAMPLE_DOC_STRING = """
|
82 |
Examples:
|
83 |
```py
|
84 |
-
>>>
|
|
|
85 |
>>> from anytext_controlnet import AnyTextControlNetModel
|
86 |
>>> from diffusers import DDIMScheduler
|
87 |
>>> from diffusers.utils import load_image
|
88 |
-
|
|
|
|
|
89 |
|
90 |
>>> # load control net and stable diffusion v1-5
|
91 |
-
>>>
|
92 |
-
...
|
93 |
-
>>> pipe =
|
94 |
-
...
|
95 |
-
...
|
|
|
96 |
|
97 |
>>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
98 |
>>> # uncomment following line if PyTorch>=2.0 is not installed for memory optimization
|
@@ -103,11 +171,9 @@ EXAMPLE_DOC_STRING = """
|
|
103 |
>>> #pipe.enable_model_cpu_offload()
|
104 |
|
105 |
>>> # generate image
|
106 |
-
>>> generator = torch.Generator("cpu").manual_seed(66273235)
|
107 |
>>> prompt = 'photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream'
|
108 |
-
>>> draw_pos = load_image("
|
109 |
-
>>> image = pipe(prompt, num_inference_steps=20,
|
110 |
-
... draw_pos=draw_pos,
|
111 |
... ).images[0]
|
112 |
>>> image
|
113 |
```
|
@@ -152,7 +218,12 @@ class EmbeddingManager(nn.Module):
|
|
152 |
self.token_dim = token_dim
|
153 |
|
154 |
self.proj = nn.Linear(40 * 64, token_dim)
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
156 |
if use_fp16:
|
157 |
self.proj = self.proj.to(dtype=torch.float16)
|
158 |
|
@@ -269,9 +340,14 @@ def crop_image(src_img, mask):
|
|
269 |
|
270 |
|
271 |
def create_predictor(model_dir=None, model_lang="ch", device="cpu", use_fp16=False):
|
272 |
-
|
273 |
-
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
if model_lang == "ch":
|
277 |
n_class = 6625
|
@@ -287,8 +363,8 @@ def create_predictor(model_dir=None, model_lang="ch", device="cpu", use_fp16=Fal
|
|
287 |
)
|
288 |
|
289 |
rec_model = RecModel(rec_config)
|
290 |
-
|
291 |
-
|
292 |
return rec_model
|
293 |
|
294 |
|
@@ -401,7 +477,7 @@ class TextRecognizer(object):
|
|
401 |
preds["ctc"] = torch.from_numpy(outputs[0])
|
402 |
preds["ctc_neck"] = [torch.zeros(1)] * img_num
|
403 |
else:
|
404 |
-
preds = self.predictor(norm_img_batch)
|
405 |
for rno in range(preds["ctc"].shape[0]):
|
406 |
preds_all[indices[beg_img_no + rno]] = preds["ctc"][rno]
|
407 |
preds_neck_all[indices[beg_img_no + rno]] = preds["ctc_neck"][rno]
|
@@ -450,21 +526,28 @@ class TextRecognizer(object):
|
|
450 |
return loss
|
451 |
|
452 |
|
453 |
-
class TextEmbeddingModule(
|
454 |
-
@register_to_config
|
455 |
def __init__(self, font_path, use_fp16=False, device="cpu"):
|
456 |
super().__init__()
|
457 |
# TODO: Learn if the recommended font file is free to use
|
458 |
self.font = ImageFont.truetype(font_path, 60)
|
|
|
|
|
459 |
self.frozen_CLIP_embedder_t3 = FrozenCLIPEmbedderT3(device=device, use_fp16=use_fp16)
|
460 |
self.embedding_manager = EmbeddingManager(self.frozen_CLIP_embedder_t3, use_fp16=use_fp16)
|
461 |
-
rec_model_dir = "./OCR/ppv3_rec.pth"
|
462 |
self.text_predictor = create_predictor(rec_model_dir, device=device, use_fp16=use_fp16).eval()
|
463 |
args = {}
|
464 |
args["rec_image_shape"] = "3, 48, 320"
|
465 |
args["rec_batch_num"] = 6
|
466 |
-
args["rec_char_dict_path"] = "OCR/ppocr_keys_v1.txt"
|
467 |
-
args["
|
|
|
|
|
|
|
|
|
|
|
468 |
self.embedding_manager.recog = TextRecognizer(args, self.text_predictor)
|
469 |
|
470 |
@torch.no_grad()
|
@@ -487,7 +570,10 @@ class TextEmbeddingModule(ModelMixin, ConfigMixin):
|
|
487 |
# preprocess pos_imgs(if numpy, make sure it's white pos in black bg)
|
488 |
if draw_pos is None:
|
489 |
pos_imgs = np.zeros((w, h, 1))
|
490 |
-
if isinstance(draw_pos,
|
|
|
|
|
|
|
491 |
draw_pos = cv2.imread(draw_pos)[..., ::-1]
|
492 |
if draw_pos is None:
|
493 |
raise ValueError(f"Can't read draw_pos image from {draw_pos}!")
|
@@ -580,7 +666,7 @@ class TextEmbeddingModule(ModelMixin, ConfigMixin):
|
|
580 |
|
581 |
self.embedding_manager.encode_text(text_info)
|
582 |
negative_prompt_embeds = self.frozen_CLIP_embedder_t3.encode(
|
583 |
-
[negative_prompt], embedding_manager=self.embedding_manager
|
584 |
)
|
585 |
|
586 |
return prompt_embeds, negative_prompt_embeds, text_info, np_hint
|
@@ -799,7 +885,8 @@ class AuxiliaryLatentModule(nn.Module):
|
|
799 |
# get masked_x
|
800 |
masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0) * (1 - np_hint)
|
801 |
masked_img = np.transpose(masked_img, (2, 0, 1))
|
802 |
-
|
|
|
803 |
if self.use_fp16:
|
804 |
masked_img = masked_img.half()
|
805 |
masked_x = (retrieve_latents(self.vae.encode(masked_img[None, ...])) * self.vae.config.scaling_factor).detach()
|
@@ -842,9 +929,9 @@ class AuxiliaryLatentModule(nn.Module):
|
|
842 |
new_string += char + " " * nSpace
|
843 |
return new_string[:-nSpace]
|
844 |
|
845 |
-
def to(self,
|
846 |
-
self.
|
847 |
-
self.
|
848 |
return self
|
849 |
|
850 |
|
@@ -969,6 +1056,9 @@ class AnyTextPipeline(
|
|
969 |
scheduler: KarrasDiffusionSchedulers,
|
970 |
safety_checker: StableDiffusionSafetyChecker,
|
971 |
feature_extractor: CLIPImageProcessor,
|
|
|
|
|
|
|
972 |
image_encoder: CLIPVisionModelWithProjection = None,
|
973 |
requires_safety_checker: bool = True,
|
974 |
):
|
@@ -1877,6 +1967,7 @@ class AnyTextPipeline(
|
|
1877 |
text_encoder_lora_scale = (
|
1878 |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1879 |
)
|
|
|
1880 |
prompt_embeds, negative_prompt_embeds, text_info, np_hint = self.text_embedding_module(
|
1881 |
prompt,
|
1882 |
texts,
|
@@ -2035,7 +2126,7 @@ class AnyTextPipeline(
|
|
2035 |
control_model_input,
|
2036 |
t,
|
2037 |
encoder_hidden_states=controlnet_prompt_embeds,
|
2038 |
-
|
2039 |
conditioning_scale=cond_scale,
|
2040 |
guess_mode=guess_mode,
|
2041 |
return_dict=False,
|
@@ -2116,3 +2207,9 @@ class AnyTextPipeline(
|
|
2116 |
return (image, has_nsfw_concept)
|
2117 |
|
2118 |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
import os
|
26 |
import re
|
27 |
import sys
|
28 |
+
import unicodedata
|
29 |
from functools import partial
|
30 |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
31 |
|
|
|
34 |
import PIL.Image
|
35 |
import torch
|
36 |
import torch.nn.functional as F
|
|
|
37 |
from easydict import EasyDict as edict
|
38 |
from frozen_clip_embedder_t3 import FrozenCLIPEmbedderT3
|
39 |
+
from huggingface_hub import hf_hub_download
|
40 |
from ocr_recog.RecModel import RecModel
|
41 |
from PIL import Image, ImageDraw, ImageFont
|
42 |
from safetensors.torch import load_file
|
|
|
67 |
scale_lora_layers,
|
68 |
unscale_lora_layers,
|
69 |
)
|
70 |
+
from diffusers.utils.constants import HF_MODULES_CACHE
|
71 |
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
|
|
|
|
72 |
|
73 |
|
74 |
+
class Checker:
|
75 |
+
def __init__(self):
|
76 |
+
pass
|
77 |
+
|
78 |
+
def _is_chinese_char(self, cp):
|
79 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
80 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
81 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
82 |
+
#
|
83 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
84 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
85 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
86 |
+
# space-separated words, so they are not treated specially and handled
|
87 |
+
# like the all of the other languages.
|
88 |
+
if (
|
89 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
90 |
+
or (cp >= 0x3400 and cp <= 0x4DBF)
|
91 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF)
|
92 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F)
|
93 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F)
|
94 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF)
|
95 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
96 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F)
|
97 |
+
):
|
98 |
+
return True
|
99 |
+
|
100 |
+
return False
|
101 |
+
|
102 |
+
def _clean_text(self, text):
|
103 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
104 |
+
output = []
|
105 |
+
for char in text:
|
106 |
+
cp = ord(char)
|
107 |
+
if cp == 0 or cp == 0xFFFD or self._is_control(char):
|
108 |
+
continue
|
109 |
+
if self._is_whitespace(char):
|
110 |
+
output.append(" ")
|
111 |
+
else:
|
112 |
+
output.append(char)
|
113 |
+
return "".join(output)
|
114 |
+
|
115 |
+
def _is_control(self, char):
|
116 |
+
"""Checks whether `chars` is a control character."""
|
117 |
+
# These are technically control characters but we count them as whitespace
|
118 |
+
# characters.
|
119 |
+
if char == "\t" or char == "\n" or char == "\r":
|
120 |
+
return False
|
121 |
+
cat = unicodedata.category(char)
|
122 |
+
if cat in ("Cc", "Cf"):
|
123 |
+
return True
|
124 |
+
return False
|
125 |
+
|
126 |
+
def _is_whitespace(self, char):
|
127 |
+
"""Checks whether `chars` is a whitespace character."""
|
128 |
+
# \t, \n, and \r are technically control characters but we treat them
|
129 |
+
# as whitespace since they are generally considered as such.
|
130 |
+
if char == " " or char == "\t" or char == "\n" or char == "\r":
|
131 |
+
return True
|
132 |
+
cat = unicodedata.category(char)
|
133 |
+
if cat == "Zs":
|
134 |
+
return True
|
135 |
+
return False
|
136 |
+
|
137 |
+
|
138 |
+
checker = Checker()
|
139 |
|
140 |
|
141 |
PLACE_HOLDER = "*"
|
|
|
145 |
EXAMPLE_DOC_STRING = """
|
146 |
Examples:
|
147 |
```py
|
148 |
+
>>> import torch
|
149 |
+
>>> from diffusers import DiffusionPipeline
|
150 |
>>> from anytext_controlnet import AnyTextControlNetModel
|
151 |
>>> from diffusers import DDIMScheduler
|
152 |
>>> from diffusers.utils import load_image
|
153 |
+
|
154 |
+
>>> # I chose a font file shared by an HF staff:
|
155 |
+
>>> !wget https://huggingface.co/spaces/ysharma/TranslateQuotesInImageForwards/resolve/main/arial-unicode-ms.ttf
|
156 |
|
157 |
>>> # load control net and stable diffusion v1-5
|
158 |
+
>>> anytext_controlnet = AnyTextControlNetModel.from_pretrained("tolgacangoz/anytext-controlnet", torch_dtype=torch.float16,
|
159 |
+
... variant="fp16",)
|
160 |
+
>>> pipe = DiffusionPipeline.from_pretrained("tolgacangoz/anytext", font_path="arial-unicode-ms.ttf",
|
161 |
+
... controlnet=anytext_controlnet, torch_dtype=torch.float16,
|
162 |
+
... trust_remote_code=True,
|
163 |
+
... ).to("cuda")
|
164 |
|
165 |
>>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
166 |
>>> # uncomment following line if PyTorch>=2.0 is not installed for memory optimization
|
|
|
171 |
>>> #pipe.enable_model_cpu_offload()
|
172 |
|
173 |
>>> # generate image
|
|
|
174 |
>>> prompt = 'photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream'
|
175 |
+
>>> draw_pos = load_image("https://raw.githubusercontent.com/tyxsspa/AnyText/refs/heads/main/example_images/gen9.png")
|
176 |
+
>>> image = pipe(prompt, num_inference_steps=20, mode="generate", draw_pos=draw_pos,
|
|
|
177 |
... ).images[0]
|
178 |
>>> image
|
179 |
```
|
|
|
218 |
self.token_dim = token_dim
|
219 |
|
220 |
self.proj = nn.Linear(40 * 64, token_dim)
|
221 |
+
proj_dir = hf_hub_download(
|
222 |
+
repo_id="tolgacangoz/anytext",
|
223 |
+
filename="text_embedding_module/proj.safetensors",
|
224 |
+
cache_dir=HF_MODULES_CACHE,
|
225 |
+
)
|
226 |
+
self.proj.load_state_dict(load_file(proj_dir, device=str(embedder.device)))
|
227 |
if use_fp16:
|
228 |
self.proj = self.proj.to(dtype=torch.float16)
|
229 |
|
|
|
340 |
|
341 |
|
342 |
def create_predictor(model_dir=None, model_lang="ch", device="cpu", use_fp16=False):
|
343 |
+
if model_dir is None or not os.path.exists(model_dir):
|
344 |
+
model_dir = hf_hub_download(
|
345 |
+
repo_id="tolgacangoz/anytext",
|
346 |
+
filename="text_embedding_module/OCR/ppv3_rec.pth",
|
347 |
+
cache_dir=HF_MODULES_CACHE,
|
348 |
+
)
|
349 |
+
if not os.path.exists(model_dir):
|
350 |
+
raise ValueError("not find model file path {}".format(model_dir))
|
351 |
|
352 |
if model_lang == "ch":
|
353 |
n_class = 6625
|
|
|
363 |
)
|
364 |
|
365 |
rec_model = RecModel(rec_config)
|
366 |
+
state_dict = torch.load(model_dir, map_location=device)
|
367 |
+
rec_model.load_state_dict(state_dict)
|
368 |
return rec_model
|
369 |
|
370 |
|
|
|
477 |
preds["ctc"] = torch.from_numpy(outputs[0])
|
478 |
preds["ctc_neck"] = [torch.zeros(1)] * img_num
|
479 |
else:
|
480 |
+
preds = self.predictor(norm_img_batch.to(next(self.predictor.parameters()).device))
|
481 |
for rno in range(preds["ctc"].shape[0]):
|
482 |
preds_all[indices[beg_img_no + rno]] = preds["ctc"][rno]
|
483 |
preds_neck_all[indices[beg_img_no + rno]] = preds["ctc_neck"][rno]
|
|
|
526 |
return loss
|
527 |
|
528 |
|
529 |
+
class TextEmbeddingModule(nn.Module):
|
530 |
+
# @register_to_config
|
531 |
def __init__(self, font_path, use_fp16=False, device="cpu"):
|
532 |
super().__init__()
|
533 |
# TODO: Learn if the recommended font file is free to use
|
534 |
self.font = ImageFont.truetype(font_path, 60)
|
535 |
+
self.use_fp16 = use_fp16
|
536 |
+
self.device = device
|
537 |
self.frozen_CLIP_embedder_t3 = FrozenCLIPEmbedderT3(device=device, use_fp16=use_fp16)
|
538 |
self.embedding_manager = EmbeddingManager(self.frozen_CLIP_embedder_t3, use_fp16=use_fp16)
|
539 |
+
rec_model_dir = "./text_embedding_module/OCR/ppv3_rec.pth"
|
540 |
self.text_predictor = create_predictor(rec_model_dir, device=device, use_fp16=use_fp16).eval()
|
541 |
args = {}
|
542 |
args["rec_image_shape"] = "3, 48, 320"
|
543 |
args["rec_batch_num"] = 6
|
544 |
+
args["rec_char_dict_path"] = "./text_embedding_module/OCR/ppocr_keys_v1.txt"
|
545 |
+
args["rec_char_dict_path"] = hf_hub_download(
|
546 |
+
repo_id="tolgacangoz/anytext",
|
547 |
+
filename="text_embedding_module/OCR/ppocr_keys_v1.txt",
|
548 |
+
cache_dir=HF_MODULES_CACHE,
|
549 |
+
)
|
550 |
+
args["use_fp16"] = use_fp16
|
551 |
self.embedding_manager.recog = TextRecognizer(args, self.text_predictor)
|
552 |
|
553 |
@torch.no_grad()
|
|
|
570 |
# preprocess pos_imgs(if numpy, make sure it's white pos in black bg)
|
571 |
if draw_pos is None:
|
572 |
pos_imgs = np.zeros((w, h, 1))
|
573 |
+
if isinstance(draw_pos, PIL.Image.Image):
|
574 |
+
pos_imgs = np.array(draw_pos)[..., ::-1]
|
575 |
+
pos_imgs = 255 - pos_imgs
|
576 |
+
elif isinstance(draw_pos, str):
|
577 |
draw_pos = cv2.imread(draw_pos)[..., ::-1]
|
578 |
if draw_pos is None:
|
579 |
raise ValueError(f"Can't read draw_pos image from {draw_pos}!")
|
|
|
666 |
|
667 |
self.embedding_manager.encode_text(text_info)
|
668 |
negative_prompt_embeds = self.frozen_CLIP_embedder_t3.encode(
|
669 |
+
[negative_prompt or ""], embedding_manager=self.embedding_manager
|
670 |
)
|
671 |
|
672 |
return prompt_embeds, negative_prompt_embeds, text_info, np_hint
|
|
|
885 |
# get masked_x
|
886 |
masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0) * (1 - np_hint)
|
887 |
masked_img = np.transpose(masked_img, (2, 0, 1))
|
888 |
+
device = next(self.vae.parameters()).device
|
889 |
+
masked_img = torch.from_numpy(masked_img.copy()).float().to(device)
|
890 |
if self.use_fp16:
|
891 |
masked_img = masked_img.half()
|
892 |
masked_x = (retrieve_latents(self.vae.encode(masked_img[None, ...])) * self.vae.config.scaling_factor).detach()
|
|
|
929 |
new_string += char + " " * nSpace
|
930 |
return new_string[:-nSpace]
|
931 |
|
932 |
+
def to(self, *args, **kwargs):
|
933 |
+
self.vae = self.vae.to(*args, **kwargs)
|
934 |
+
self.device = self.vae.device
|
935 |
return self
|
936 |
|
937 |
|
|
|
1056 |
scheduler: KarrasDiffusionSchedulers,
|
1057 |
safety_checker: StableDiffusionSafetyChecker,
|
1058 |
feature_extractor: CLIPImageProcessor,
|
1059 |
+
trust_remote_code: bool = False,
|
1060 |
+
text_embedding_module: TextEmbeddingModule = None,
|
1061 |
+
auxiliary_latent_module: AuxiliaryLatentModule = None,
|
1062 |
image_encoder: CLIPVisionModelWithProjection = None,
|
1063 |
requires_safety_checker: bool = True,
|
1064 |
):
|
|
|
1967 |
text_encoder_lora_scale = (
|
1968 |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1969 |
)
|
1970 |
+
draw_pos = draw_pos.to(device=device) if isinstance(draw_pos, torch.Tensor) else draw_pos
|
1971 |
prompt_embeds, negative_prompt_embeds, text_info, np_hint = self.text_embedding_module(
|
1972 |
prompt,
|
1973 |
texts,
|
|
|
2126 |
control_model_input,
|
2127 |
t,
|
2128 |
encoder_hidden_states=controlnet_prompt_embeds,
|
2129 |
+
controlnet_cond=guided_hint,
|
2130 |
conditioning_scale=cond_scale,
|
2131 |
guess_mode=guess_mode,
|
2132 |
return_dict=False,
|
|
|
2207 |
return (image, has_nsfw_concept)
|
2208 |
|
2209 |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
2210 |
+
|
2211 |
+
def to(self, *args, **kwargs):
|
2212 |
+
super().to(*args, **kwargs)
|
2213 |
+
self.text_embedding_module.to(*args, **kwargs)
|
2214 |
+
self.auxiliary_latent_module.to(*args, **kwargs)
|
2215 |
+
return self
|