from torch import nn from .RecCTCHead import CTCHead from .RecMv1_enhance import MobileNetV1Enhance from .RNN import Im2Im, Im2Seq, SequenceEncoder backbone_dict = {"MobileNetV1Enhance": MobileNetV1Enhance} neck_dict = {"SequenceEncoder": SequenceEncoder, "Im2Seq": Im2Seq, "None": Im2Im} head_dict = {"CTCHead": CTCHead} class RecModel(nn.Module): def __init__(self, config): super().__init__() assert "in_channels" in config, "in_channels must in model config" backbone_type = config["backbone"].pop("type") assert backbone_type in backbone_dict, f"backbone.type must in {backbone_dict}" self.backbone = backbone_dict[backbone_type](config['in_channels'], **config['backbone']) neck_type = config['neck'].pop("type") assert neck_type in neck_dict, f"neck.type must in {neck_dict}" self.neck = neck_dict[neck_type](self.backbone.out_channels, **config['neck']) head_type = config['head'].pop("type") assert head_type in head_dict, f"head.type must in {head_dict}" self.head = head_dict[head_type](self.neck.out_channels, **config['head']) self.name = f"RecModel_{backbone_type}_{neck_type}_{head_type}" def load_3rd_state_dict(self, _3rd_name, _state): self.backbone.load_3rd_state_dict(_3rd_name, _state) self.neck.load_3rd_state_dict(_3rd_name, _state) self.head.load_3rd_state_dict(_3rd_name, _state) def forward(self, x): import torch x = x.to(torch.float32) x = self.backbone(x) x = self.neck(x) x = self.head(x) return x def encode(self, x): x = self.backbone(x) x = self.neck(x) x = self.head.ctc_encoder(x) return x