import torch import torch.nn as nn import torch.nn.functional as F class Hswish(nn.Module): def __init__(self, inplace=True): super(Hswish, self).__init__() self.inplace = inplace def forward(self, x): return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0 # out = max(0, min(1, slop*x+offset)) # paddle.fluid.layers.hard_sigmoid(x, slope=0.2, offset=0.5, name=None) class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): # torch: F.relu6(x + 3., inplace=self.inplace) / 6. # paddle: F.relu6(1.2 * x + 3., inplace=self.inplace) / 6. return F.relu6(1.2 * x + 3.0, inplace=self.inplace) / 6.0 class GELU(nn.Module): def __init__(self, inplace=True): super(GELU, self).__init__() self.inplace = inplace def forward(self, x): return torch.nn.functional.gelu(x) class Swish(nn.Module): def __init__(self, inplace=True): super(Swish, self).__init__() self.inplace = inplace def forward(self, x): if self.inplace: x.mul_(torch.sigmoid(x)) return x else: return x * torch.sigmoid(x) class Activation(nn.Module): def __init__(self, act_type, inplace=True): super(Activation, self).__init__() act_type = act_type.lower() if act_type == "relu": self.act = nn.ReLU(inplace=inplace) elif act_type == "relu6": self.act = nn.ReLU6(inplace=inplace) elif act_type == "sigmoid": raise NotImplementedError elif act_type == "hard_sigmoid": self.act = Hsigmoid(inplace) elif act_type == "hard_swish": self.act = Hswish(inplace=inplace) elif act_type == "leakyrelu": self.act = nn.LeakyReLU(inplace=inplace) elif act_type == "gelu": self.act = GELU(inplace=inplace) elif act_type == "swish": self.act = Swish(inplace=inplace) else: raise NotImplementedError def forward(self, inputs): return self.act(inputs)