File size: 221,844 Bytes
a93c410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03fda3
1456055
33a8121
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d718d
 
a03fda3
33d718d
 
 
a03fda3
33d718d
 
 
 
 
 
 
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a785c1
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de9542
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33a8121
05a9a16
 
33a8121
a03fda3
 
 
 
 
05a9a16
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
6f3dc35
 
 
 
 
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
987a636
 
 
 
7f08644
987a636
 
 
 
 
 
 
 
 
a03fda3
987a636
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a785c1
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a785c1
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e61dfa2
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a785c1
a03fda3
 
 
 
 
 
 
 
 
 
 
 
8a785c1
 
 
 
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a785c1
a03fda3
8a785c1
 
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e61dfa2
 
 
 
 
 
 
 
 
 
 
 
 
a03fda3
 
 
 
 
e61dfa2
 
 
 
 
 
889cc98
a03fda3
 
 
e61dfa2
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f08644
 
a03fda3
 
 
 
 
 
 
 
7f08644
 
a03fda3
8a785c1
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eb4145
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
7f08644
 
 
 
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a785c1
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a785c1
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a785c1
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eb4145
a03fda3
 
 
 
 
 
7f08644
a03fda3
 
7f08644
 
a03fda3
 
 
7f08644
a03fda3
 
 
 
 
 
 
5eb4145
a03fda3
 
 
 
 
7f08644
a03fda3
 
 
7f08644
a03fda3
 
 
7f08644
 
 
 
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f08644
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f08644
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a785c1
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a93c410
a03fda3
 
 
 
 
 
 
 
 
 
 
 
a93c410
 
 
 
a03fda3
 
 
 
a93c410
 
 
a03fda3
 
 
6412a5a
a03fda3
 
 
 
 
 
 
54b3ffb
a03fda3
 
e30e6fa
57f9d0f
a03fda3
 
 
a93c410
33a8121
 
 
a93c410
33a8121
 
 
a93c410
33a8121
 
 
a93c410
 
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
5828500
 
 
 
 
 
 
 
 
 
 
 
a03fda3
a93c410
 
a03fda3
a93c410
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfa3f14
 
8a785c1
 
cfa3f14
a03fda3
 
 
 
 
 
 
 
96d2b4d
a03fda3
 
96d2b4d
 
cfa3f14
 
33a8121
 
 
96d2b4d
 
33a8121
 
 
96d2b4d
cfa3f14
05a9a16
96d2b4d
33a8121
 
 
96d2b4d
cfa3f14
05a9a16
96d2b4d
 
 
1456055
 
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2b36b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a93c410
bf2b36b
 
 
 
7f08644
bf2b36b
7f08644
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2b36b
 
a03fda3
bf2b36b
 
 
 
7f08644
bf2b36b
 
7f08644
bf2b36b
7f08644
a03fda3
7f08644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33a8121
 
 
7f08644
 
 
 
 
 
 
 
 
 
 
33a8121
 
 
 
 
 
7f08644
 
 
 
 
 
 
 
a03fda3
7f08644
a03fda3
7f08644
a03fda3
 
 
 
 
 
7f08644
 
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2b36b
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a93c410
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f08644
 
 
 
 
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f08644
 
 
 
 
 
a03fda3
 
 
 
 
 
 
 
 
 
 
6412a5a
 
 
a93c410
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
6412a5a
 
 
 
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f08644
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6412a5a
a03fda3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e218e03
9964995
 
a93c410
 
a03fda3
 
 
 
 
 
 
e218e03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111).
# Authors: Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Josh Susskind, Navdeep Jaitly
# Code: https://github.com/apple/ml-mdm with MIT license
#
# Adapted to Diffusers by [M. Tolga Cangöz](https://github.com/tolgacangoz).


import gc
import inspect
import math
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from packaging import version
from PIL import Image
from torch import nn
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, T5TokenizerFast

from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.configuration_utils import ConfigMixin, FrozenDict, LegacyConfigMixin, register_to_config
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import (
    FromSingleFileMixin,
    IPAdapterMixin,
    PeftAdapterMixin,
    StableDiffusionLoraLoaderMixin,
    TextualInversionLoaderMixin,
    UNet2DConditionLoadersMixin,
)
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.models.activations import GELU, get_activation
from diffusers.models.attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
    Attention,
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
    FusedAttnProcessor2_0,
)
from diffusers.models.downsampling import Downsample2D
from diffusers.models.embeddings import (
    GaussianFourierProjection,
    GLIGENTextBoundingboxProjection,
    ImageHintTimeEmbedding,
    ImageProjection,
    ImageTimeEmbedding,
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
    Timesteps,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.models.modeling_utils import LegacyModelMixin, ModelMixin
from diffusers.models.resnet import ResnetBlock2D
from diffusers.models.unets.unet_2d_blocks import DownBlock2D, UpBlock2D
from diffusers.models.upsampling import Upsample2D
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import (
    USE_PEFT_BACKEND,
    BaseOutput,
    deprecate,
    is_torch_version,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import apply_freeu, randn_tensor


if is_torch_xla_available():
    import torch_xla.core.xla_model as xm  # type: ignore

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> from diffusers import DiffusionPipeline
        >>> from diffusers.utils import make_image_grid

        >>> # nesting_level=0 -> 64x64; nesting_level=1 -> 256x256 - 64x64; nesting_level=2 -> 1024x1024 - 256x256 - 64x64
        >>> pipe = DiffusionPipeline.from_pretrained("tolgacangoz/matryoshka-diffusion-models",
        >>>                                          custom_pipeline="matryoshka").to("cuda")

        >>> prompt0 = "a blue jay stops on the top of a helmet of Japanese samurai, background with sakura tree"
        >>> prompt = f"breathtaking {prompt0}. award-winning, professional, highly detailed"
        >>> negative_prompt = "deformed, mutated, ugly, disfigured, blur, blurry, noise, noisy"
        >>> image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=50).images
        >>> make_image_grid(image, rows=1, cols=len(image))

        >>> pipe.change_nesting_level(<int>)  # 0, 1, or 2
        >>> # 50+, 100+, and 250+ num_inference_steps are recommended for nesting levels 0, 1, and 2 respectively.
        ```
"""


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


# Copied from diffusers.models.attention._chunked_feed_forward
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
    # "feed_forward_chunk_size" can be used to save memory
    if hidden_states.shape[chunk_dim] % chunk_size != 0:
        raise ValueError(
            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
        )

    num_chunks = hidden_states.shape[chunk_dim] // chunk_size
    ff_output = torch.cat(
        [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
        dim=chunk_dim,
    )
    return ff_output


@dataclass
class MatryoshkaDDIMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: Union[torch.Tensor, List[torch.Tensor]]
    pred_original_sample: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None


# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
    if alpha_transform_type == "cosine":

        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float32)


# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
        betas (`torch.Tensor`):
            the betas that the scheduler is being initialized with.

    Returns:
        `torch.Tensor`: rescaled betas with zero terminal SNR
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


class MatryoshkaDDIMScheduler(SchedulerMixin, ConfigMixin):
    """
    `DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
    non-Markovian guidance.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        set_alpha_to_one (`bool`, defaults to `True`):
            Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
            there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the alpha value at step 0.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps, as required by some model families.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        timestep_spacing (`str`, defaults to `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
    """

    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
        steps_offset: int = 0,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
        timestep_spacing: str = "leading",
        rescale_betas_zero_snr: bool = False,
    ):
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
        elif beta_schedule == "squaredcos_cap_v2":
            if self.config.timestep_spacing == "matryoshka_style":
                self.betas = torch.cat((torch.tensor([0]), betas_for_alpha_bar(num_train_timesteps)))
            else:
                # Glide cosine schedule
                self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")

        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
        # whether we use the final alpha of the "non-previous" one.
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # setable values
        self.num_inference_steps = None
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))

        self.scales = None
        self.schedule_shifted_power = 1.0

    def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.Tensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

        Returns:
            `torch.Tensor`:
                A scaled input sample.
        """
        return sample

    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, *remaining_dims = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, *remaining_dims)
        sample = sample.to(dtype)

        return sample

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
        """

        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

        self.num_inference_steps = num_inference_steps

        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                .round()[::-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
            timesteps -= 1
        elif self.config.timestep_spacing == "matryoshka_style":
            step_ratio = (self.config.num_train_timesteps + 1) / (num_inference_steps + 1)
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1].copy().astype(np.int64)
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
            )

        self.timesteps = torch.from_numpy(timesteps).to(device)

    def get_schedule_shifted(self, alpha_prod, scale_factor=None):
        if (scale_factor is not None) and (scale_factor > 1):  # rescale noise schedule
            scale_factor = scale_factor ** self.schedule_shifted_power
            snr = alpha_prod / (1 - alpha_prod)
            scaled_snr = snr / scale_factor
            alpha_prod = 1 / (1 + 1 / scaled_snr)
        return alpha_prod

    def step(
        self,
        model_output: torch.Tensor,
        timestep: int,
        sample: torch.Tensor,
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
        generator=None,
        variance_noise: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ) -> Union[MatryoshkaDDIMSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.Tensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.Tensor`):
                A current instance of a sample created by the diffusion process.
            eta (`float`):
                The weight of noise for added noise in diffusion step.
            use_clipped_model_output (`bool`, defaults to `False`):
                If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
                because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
                clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
                `use_clipped_model_output` has no effect.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            variance_noise (`torch.Tensor`):
                Alternative to generating noise with `generator` by directly providing the noise for the variance
                itself. Useful for methods such as [`CycleDiffusion`].
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_sample -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_sample_direction -> "direction pointing to x_t"
        # - pred_prev_sample -> "x_t-1"

        # 1. get previous step value (=t-1)
        if self.config.timestep_spacing != "matryoshka_style":
            prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
        else:
            prev_timestep = self.timesteps[torch.nonzero(self.timesteps == timestep).item() + 1]

        # 2. compute alphas, betas
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod

        if self.config.timestep_spacing == "matryoshka_style" and len(model_output) > 1:
            alpha_prod_t = torch.tensor([self.get_schedule_shifted(alpha_prod_t, s) for s in self.scales])
            alpha_prod_t_prev = torch.tensor([self.get_schedule_shifted(alpha_prod_t_prev, s) for s in self.scales])

        beta_prod_t = 1 - alpha_prod_t

        # 3. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        if self.config.prediction_type == "epsilon":
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
            pred_epsilon = model_output
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
        elif self.config.prediction_type == "v_prediction":
            if len(model_output) > 1:
                pred_original_sample = []
                pred_epsilon = []
                for m_o, s, a_p_t, b_p_t in zip(model_output, sample, alpha_prod_t, beta_prod_t):
                    pred_original_sample.append((a_p_t**0.5) * s - (b_p_t**0.5) * m_o)
                    pred_epsilon.append((a_p_t**0.5) * m_o + (b_p_t**0.5) * s)
            else:
                pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
                pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                " `v_prediction`"
            )

        # 4. Clip or threshold "predicted x_0"
        if self.config.thresholding:
            if len(model_output) > 1:
                pred_original_sample = [
                    self._threshold_sample(p_o_s)
                    for p_o_s in pred_original_sample
                ]
            else:
                pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
            if len(model_output) > 1:
                pred_original_sample = [
                    p_o_s.clamp(-self.config.clip_sample_range, self.config.clip_sample_range)
                    for p_o_s in pred_original_sample
                ]
            else:
                pred_original_sample = pred_original_sample.clamp(
                    -self.config.clip_sample_range, self.config.clip_sample_range
                )

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        variance = self._get_variance(timestep, prev_timestep)
        std_dev_t = eta * variance ** (0.5)

        if use_clipped_model_output:
            # the pred_epsilon is always re-derived from the clipped x_0 in Glide
            if len(model_output) > 1:
                pred_epsilon = []
                for s, a_p_t, p_o_s, b_p_t in zip(sample, alpha_prod_t, pred_original_sample, beta_prod_t):
                    pred_epsilon.append((s - a_p_t ** (0.5) * p_o_s) / b_p_t ** (0.5))
            else:
                pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)

        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        if len(model_output) > 1:
            pred_sample_direction = []
            for p_e, a_p_t_p in zip(pred_epsilon, alpha_prod_t_prev):
                pred_sample_direction.append((1 - a_p_t_p - std_dev_t**2) ** (0.5) * p_e)
        else:
            pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        if len(model_output) > 1:
            prev_sample = []
            for p_o_s, p_s_d, a_p_t_p in zip(pred_original_sample, pred_sample_direction, alpha_prod_t_prev):
                prev_sample.append(a_p_t_p ** (0.5) * p_o_s + p_s_d)
        else:
            prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
            if variance_noise is not None and generator is not None:
                raise ValueError(
                    "Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
                    " `variance_noise` stays `None`."
                )

            if variance_noise is None:
                if len(model_output) > 1:
                    variance_noise = []
                    for m_o in model_output:
                        variance_noise.append(
                            randn_tensor(m_o.shape, generator=generator, device=m_o.device, dtype=m_o.dtype)
                        )
                else:
                    variance_noise = randn_tensor(
                        model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
                    )
            if len(model_output) > 1:
                prev_sample = [p_s + std_dev_t * v_n for v_n, p_s in zip(variance_noise, prev_sample)]
            else:
                variance = std_dev_t * variance_noise

                prev_sample = prev_sample + variance

        if not return_dict:
            return (prev_sample,)

        return MatryoshkaDDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
    def add_noise(
        self,
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.IntTensor,
    ) -> torch.Tensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
    def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
        timesteps = timesteps.to(sample.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

    def __len__(self):
        return self.config.num_train_timesteps


class CrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        norm_type: str = "layer_norm",
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        cross_attention_norm: Optional[str] = None,
        output_scale_factor: float = 1.0,
        downsample_padding: int = 1,
        add_downsample: bool = True,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        attention_type: str = "default",
        attention_pre_only: bool = False,
        attention_bias: bool = False,
        use_attention_ffn: bool = True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * num_layers

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
                MatryoshkaTransformer2DModel(
                    num_attention_heads,
                    out_channels // num_attention_heads,
                    in_channels=out_channels,
                    num_layers=transformer_layers_per_block[i],
                    cross_attention_dim=cross_attention_dim,
                    upcast_attention=upcast_attention,
                    use_attention_ffn=use_attention_ffn,
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        additional_residuals: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")

        output_states = ()

        blocks = list(zip(self.resnets, self.attentions))

        for i, (resnet, attn) in enumerate(blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
            else:
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]

            # apply additional residuals to the output of the last pair of resnet and attention blocks
            if i == len(blocks) - 1 and additional_residuals is not None:
                hidden_states = hidden_states + additional_residuals

            output_states = output_states + (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states = output_states + (hidden_states,)

        return hidden_states, output_states


class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        out_channels: Optional[int] = None,
        dropout: float = 0.0,
        num_layers: int = 1,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_groups_out: Optional[int] = None,
        resnet_pre_norm: bool = True,
        norm_type: str = "layer_norm",
        num_attention_heads: int = 1,
        output_scale_factor: float = 1.0,
        cross_attention_dim: int = 1280,
        cross_attention_norm: Optional[str] = None,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        upcast_attention: bool = False,
        attention_type: str = "default",
        attention_pre_only: bool = False,
        attention_bias: bool = False,
        use_attention_ffn: bool = True,
    ):
        super().__init__()

        out_channels = out_channels or in_channels
        self.in_channels = in_channels
        self.out_channels = out_channels

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # support for variable transformer layers per block
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * num_layers

        resnet_groups_out = resnet_groups_out or resnet_groups

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                groups_out=resnet_groups_out,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for i in range(num_layers):
            attentions.append(
                MatryoshkaTransformer2DModel(
                    num_attention_heads,
                    out_channels // num_attention_heads,
                    in_channels=out_channels,
                    num_layers=transformer_layers_per_block[i],
                    cross_attention_dim=cross_attention_dim,
                    upcast_attention=upcast_attention,
                    use_attention_ffn=use_attention_ffn,
                )
            )
            resnets.append(
                ResnetBlock2D(
                    in_channels=out_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups_out,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")

        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
                hidden_states = resnet(hidden_states, temb)

        return hidden_states


class CrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        resolution_idx: Optional[int] = None,
        dropout: float = 0.0,
        num_layers: int = 1,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        norm_type: str = "layer_norm",
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        cross_attention_norm: Optional[str] = None,
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        attention_type: str = "default",
        attention_pre_only: bool = False,
        attention_bias: bool = False,
        use_attention_ffn: bool = True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads

        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * num_layers

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
                MatryoshkaTransformer2DModel(
                    num_attention_heads,
                    out_channels // num_attention_heads,
                    in_channels=out_channels,
                    num_layers=transformer_layers_per_block[i],
                    cross_attention_dim=cross_attention_dim,
                    upcast_attention=upcast_attention,
                    use_attention_ffn=use_attention_ffn,
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
        self.resolution_idx = resolution_idx

    def forward(
        self,
        hidden_states: torch.Tensor,
        res_hidden_states_tuple: Tuple[torch.Tensor, ...],
        temb: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")

        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )

        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
            else:
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, upsample_size)

        return hidden_states


@dataclass
class MatryoshkaTransformer2DModelOutput(BaseOutput):
    """
    The output of [`MatryoshkaTransformer2DModel`].

    Args:
        sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`MatryoshkaTransformer2DModel`] is discrete):
            The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
            distributions for the unnoised latent pixels.
    """

    sample: "torch.Tensor"  # noqa: F821


class MatryoshkaTransformer2DModel(LegacyModelMixin, LegacyConfigMixin):
    _supports_gradient_checkpointing = True
    _no_split_modules = ["MatryoshkaTransformerBlock"]

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        cross_attention_dim: Optional[int] = None,
        upcast_attention: bool = False,
        use_attention_ffn: bool = True,
    ):
        super().__init__()
        self.in_channels = self.config.num_attention_heads * self.config.attention_head_dim
        self.gradient_checkpointing = False

        self.transformer_blocks = nn.ModuleList(
            [
                MatryoshkaTransformerBlock(
                    self.in_channels,
                    self.config.num_attention_heads,
                    self.config.attention_head_dim,
                    cross_attention_dim=self.config.cross_attention_dim,
                    upcast_attention=self.config.upcast_attention,
                    use_attention_ffn=self.config.use_attention_ffn,
                )
                for _ in range(self.config.num_layers)
            ]
        )

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        added_cond_kwargs: Dict[str, torch.Tensor] = None,
        class_labels: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ):
        """
        The [`MatryoshkaTransformer2DModel`] forward method.

        Args:
            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
                Input `hidden_states`.
            encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.LongTensor`, *optional*):
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
            class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
            cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            attention_mask ( `torch.Tensor`, *optional*):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            encoder_attention_mask ( `torch.Tensor`, *optional*):
                Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:

                    * Mask `(batch, sequence_length)` True = keep, False = discard.
                    * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

                If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
                above. This bias will be added to the cross-attention scores.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~NestedUNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~MatryoshkaTransformer2DModelOutput`] is returned,
            otherwise a `tuple` where the first element is the sample tensor.
        """
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # Blocks
        for block in self.transformer_blocks:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    timestep,
                    cross_attention_kwargs,
                    class_labels,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = block(
                    hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    timestep=timestep,
                    cross_attention_kwargs=cross_attention_kwargs,
                    class_labels=class_labels,
                )

        # Output
        output = hidden_states

        if not return_dict:
            return (output,)

        return MatryoshkaTransformer2DModelOutput(sample=output)


class MatryoshkaTransformerBlock(nn.Module):
    r"""
    Matryoshka Transformer block.

    Parameters:
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        cross_attention_dim: Optional[int] = None,
        upcast_attention: bool = False,
        use_attention_ffn: bool = True,
    ):
        super().__init__()
        self.dim = dim
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        self.cross_attention_dim = cross_attention_dim

        # Define 3 blocks.
        # 1. Self-Attn
        self.attn1 = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            norm_num_groups=32,
            bias=True,
            upcast_attention=upcast_attention,
            pre_only=True,
            processor=MatryoshkaFusedAttnProcessor2_0(),
        )
        self.attn1.fuse_projections()
        del self.attn1.to_q
        del self.attn1.to_k
        del self.attn1.to_v

        # 2. Cross-Attn
        if cross_attention_dim is not None and cross_attention_dim > 0:
            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim,
                cross_attention_norm="layer_norm",
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                bias=True,
                upcast_attention=upcast_attention,
                pre_only=True,
                processor=MatryoshkaFusedAttnProcessor2_0(),
            )
            self.attn2.fuse_projections()
            del self.attn2.to_q
            del self.attn2.to_k
            del self.attn2.to_v

        self.proj_out = nn.Linear(dim, dim)

        if use_attention_ffn:
            # 3. Feed-forward
            self.ff = MatryoshkaFeedForward(dim)
        else:
            self.ff = None

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    # Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> torch.Tensor:
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")

        # 1. Self-Attention
        batch_size, channels, *spatial_dims = hidden_states.shape

        attn_output, query = self.attn1(
            hidden_states,
            # **cross_attention_kwargs,
        )

        # 2. Cross-Attention
        if self.cross_attention_dim is not None and self.cross_attention_dim > 0:
            attn_output_cond = self.attn2(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                self_attention_output=attn_output,
                self_attention_query=query,
                # **cross_attention_kwargs,
            )

        attn_output_cond = self.proj_out(attn_output_cond)
        attn_output_cond = attn_output_cond.permute(0, 2, 1).reshape(batch_size, channels, *spatial_dims)
        hidden_states = hidden_states + attn_output_cond

        if self.ff is not None:
            # 3. Feed-forward
            if self._chunk_size is not None:
                # "feed_forward_chunk_size" can be used to save memory
                ff_output = _chunked_feed_forward(self.ff, hidden_states, self._chunk_dim, self._chunk_size)
            else:
                ff_output = self.ff(hidden_states)

            hidden_states = ff_output + hidden_states

        return hidden_states


class MatryoshkaFusedAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses
    fused projection layers. For self-attention modules, all projection matrices (i.e., query, key, value) are fused.
    For cross-attention modules, key and value projection matrices are fused.

    <Tip warning={true}>

    This API is currently 🧪 experimental in nature and can change in future.

    </Tip>
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "MatryoshkaFusedAttnProcessor2_0 requires PyTorch 2.x, to use it. Please upgrade PyTorch to > 2.x."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        self_attention_query: Optional[torch.Tensor] = None,
        self_attention_output: Optional[torch.Tensor] = None,
        *args,
        **kwargs,
    ) -> torch.Tensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states)

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2).contiguous()

        if encoder_hidden_states is None:
            qkv = attn.to_qkv(hidden_states)
            split_size = qkv.shape[-1] // 3
            query, key, value = torch.split(qkv, split_size, dim=-1)
        else:
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
            if self_attention_query is not None:
                query = self_attention_query
            else:
                query = attn.to_q(hidden_states)

            kv = attn.to_kv(encoder_hidden_states)
            split_size = kv.shape[-1] // 2
            key, value = torch.split(kv, split_size, dim=-1)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        if self_attention_output is None:
            query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.to(query.dtype)

        if self_attention_output is not None:
            hidden_states = hidden_states + self_attention_output
            hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states if self_attention_output is not None else (hidden_states, query)


class MatryoshkaFeedForward(nn.Module):
    r"""
    A feed-forward layer for the Matryoshka models.

    Parameters:"""

    def __init__(
        self,
        dim: int,
    ):
        super().__init__()

        self.group_norm = nn.GroupNorm(32, dim)
        self.linear_gelu = GELU(dim, dim * 4)
        self.linear_out = nn.Linear(dim * 4, dim)

    def forward(self, x):
        batch_size, channels, *spatial_dims = x.shape
        x = self.group_norm(x)
        x = x.view(batch_size, channels, -1).permute(0, 2, 1)
        x = self.linear_out(self.linear_gelu(x))
        x = x.permute(0, 2, 1).view(batch_size, channels, *spatial_dims)
        return x


def get_down_block(
    down_block_type: str,
    num_layers: int,
    in_channels: int,
    out_channels: int,
    temb_channels: int,
    add_downsample: bool,
    resnet_eps: float,
    resnet_act_fn: str,
    norm_type: str = "layer_norm",
    transformer_layers_per_block: int = 1,
    num_attention_heads: Optional[int] = None,
    resnet_groups: Optional[int] = None,
    cross_attention_dim: Optional[int] = None,
    downsample_padding: Optional[int] = None,
    dual_cross_attention: bool = False,
    use_linear_projection: bool = False,
    only_cross_attention: bool = False,
    upcast_attention: bool = False,
    resnet_time_scale_shift: str = "default",
    attention_type: str = "default",
    attention_pre_only: bool = False,
    resnet_skip_time_act: bool = False,
    resnet_out_scale_factor: float = 1.0,
    cross_attention_norm: Optional[str] = None,
    attention_head_dim: Optional[int] = None,
    use_attention_ffn: bool = True,
    downsample_type: Optional[str] = None,
    dropout: float = 0.0,
):
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warning(
            f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            dropout=dropout,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "CrossAttnDownBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
        return CrossAttnDownBlock2D(
            num_layers=num_layers,
            transformer_layers_per_block=transformer_layers_per_block,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            dropout=dropout,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            norm_type=norm_type,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            cross_attention_dim=cross_attention_dim,
            cross_attention_norm=cross_attention_norm,
            num_attention_heads=num_attention_heads,
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
            upcast_attention=upcast_attention,
            resnet_time_scale_shift=resnet_time_scale_shift,
            attention_type=attention_type,
            attention_pre_only=attention_pre_only,
            use_attention_ffn=use_attention_ffn,
        )


def get_mid_block(
    mid_block_type: str,
    temb_channels: int,
    in_channels: int,
    resnet_eps: float,
    resnet_act_fn: str,
    resnet_groups: int,
    norm_type: str = "layer_norm",
    output_scale_factor: float = 1.0,
    transformer_layers_per_block: int = 1,
    num_attention_heads: Optional[int] = None,
    cross_attention_dim: Optional[int] = None,
    dual_cross_attention: bool = False,
    use_linear_projection: bool = False,
    mid_block_only_cross_attention: bool = False,
    upcast_attention: bool = False,
    resnet_time_scale_shift: str = "default",
    attention_type: str = "default",
    attention_pre_only: bool = False,
    resnet_skip_time_act: bool = False,
    cross_attention_norm: Optional[str] = None,
    attention_head_dim: Optional[int] = 1,
    dropout: float = 0.0,
):
    if mid_block_type == "UNetMidBlock2DCrossAttn":
        return UNetMidBlock2DCrossAttn(
            transformer_layers_per_block=transformer_layers_per_block,
            in_channels=in_channels,
            temb_channels=temb_channels,
            dropout=dropout,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            norm_type=norm_type,
            output_scale_factor=output_scale_factor,
            resnet_time_scale_shift=resnet_time_scale_shift,
            cross_attention_dim=cross_attention_dim,
            cross_attention_norm=cross_attention_norm,
            num_attention_heads=num_attention_heads,
            resnet_groups=resnet_groups,
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            upcast_attention=upcast_attention,
            attention_type=attention_type,
            attention_pre_only=attention_pre_only,
        )


def get_up_block(
    up_block_type: str,
    num_layers: int,
    in_channels: int,
    out_channels: int,
    prev_output_channel: int,
    temb_channels: int,
    add_upsample: bool,
    resnet_eps: float,
    resnet_act_fn: str,
    norm_type: str = "layer_norm",
    resolution_idx: Optional[int] = None,
    transformer_layers_per_block: int = 1,
    num_attention_heads: Optional[int] = None,
    resnet_groups: Optional[int] = None,
    cross_attention_dim: Optional[int] = None,
    dual_cross_attention: bool = False,
    use_linear_projection: bool = False,
    only_cross_attention: bool = False,
    upcast_attention: bool = False,
    resnet_time_scale_shift: str = "default",
    attention_type: str = "default",
    attention_pre_only: bool = False,
    resnet_skip_time_act: bool = False,
    resnet_out_scale_factor: float = 1.0,
    cross_attention_norm: Optional[str] = None,
    attention_head_dim: Optional[int] = None,
    use_attention_ffn: bool = True,
    upsample_type: Optional[str] = None,
    dropout: float = 0.0,
) -> nn.Module:
    # If attn head dim is not defined, we default it to the number of heads
    if attention_head_dim is None:
        logger.warning(
            f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
        )
        attention_head_dim = num_attention_heads

    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            resolution_idx=resolution_idx,
            dropout=dropout,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif up_block_type == "CrossAttnUpBlock2D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
        return CrossAttnUpBlock2D(
            num_layers=num_layers,
            transformer_layers_per_block=transformer_layers_per_block,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            resolution_idx=resolution_idx,
            dropout=dropout,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            norm_type=norm_type,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
            cross_attention_norm=cross_attention_norm,
            num_attention_heads=num_attention_heads,
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
            upcast_attention=upcast_attention,
            resnet_time_scale_shift=resnet_time_scale_shift,
            attention_type=attention_type,
            attention_pre_only=attention_pre_only,
            use_attention_ffn=use_attention_ffn,
        )


class MatryoshkaCombinedTimestepTextEmbedding(nn.Module):
    def __init__(self, addition_time_embed_dim, cross_attention_dim, time_embed_dim, type):
        super().__init__()
        if type == "unet":
            self.cond_emb = nn.Linear(cross_attention_dim, time_embed_dim, bias=False)
        elif type == "nested_unet":
            self.cond_emb = None
        self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos=False, downscale_freq_shift=0)
        self.add_timestep_embedder = TimestepEmbedding(addition_time_embed_dim, time_embed_dim)

    def forward(self, emb, encoder_hidden_states, added_cond_kwargs):
        conditioning_mask = added_cond_kwargs.get("conditioning_mask", None)
        masked_cross_attention = added_cond_kwargs.get("masked_cross_attention", False)
        if self.cond_emb is not None and not added_cond_kwargs.get("from_nested", False):
            if conditioning_mask is None:
                y = encoder_hidden_states.mean(dim=1)
            else:
                y = (conditioning_mask.unsqueeze(-1) * encoder_hidden_states).sum(dim=1) / conditioning_mask.sum(
                    dim=1, keepdim=True
                )
            cond_emb = self.cond_emb(y)
        else:
            cond_emb = None

        if not masked_cross_attention:
            conditioning_mask = None

        micro = added_cond_kwargs.get("micro_conditioning_scale", None)
        if micro is not None:
            temb = self.add_time_proj(torch.tensor([micro], device=emb.device, dtype=emb.dtype))
            temb_micro_conditioning = self.add_timestep_embedder(temb.to(emb.dtype))
            # if self.cond_emb is not None and not added_cond_kwargs.get("from_nested", False):
            return temb_micro_conditioning, conditioning_mask, cond_emb

        return None, conditioning_mask, cond_emb


@dataclass
class MatryoshkaUNet2DConditionOutput(BaseOutput):
    """
    The output of [`MatryoshkaUNet2DConditionOutput`].

    Args:
        sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
            The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.Tensor = None
    sample_inner: torch.Tensor = None


class MatryoshkaUNet2DConditionModel(
    ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin
):
    r"""
    A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
    shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).

    Parameters:
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
        in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
        flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
            Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
            `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
            The tuple of upsample blocks to use.
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
            If `None`, normalization and activation layers is skipped in post-processing.
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
        transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
            [`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
            [`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
        reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
            blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
            [`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
            [`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
        encoder_hid_dim (`int`, *optional*, defaults to None):
            If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
            dimension to `cross_attention_dim`.
        encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
            If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
            embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
        num_attention_heads (`int`, *optional*):
            The number of attention heads. If not defined, defaults to `attention_head_dim`
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
            for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
        class_embed_type (`str`, *optional*, defaults to `None`):
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
        addition_embed_type (`str`, *optional*, defaults to `None`):
            Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
            "text". "text" will use the `TextTimeEmbedding` layer.
        addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
            Dimension for the timestep embeddings.
        num_class_embeds (`int`, *optional*, defaults to `None`):
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
        time_embedding_type (`str`, *optional*, defaults to `positional`):
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
        time_embedding_dim (`int`, *optional*, defaults to `None`):
            An optional override for the dimension of the projected time embedding.
        time_embedding_act_fn (`str`, *optional*, defaults to `None`):
            Optional activation function to use only once on the time embeddings before they are passed to the rest of
            the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
        timestep_post_act (`str`, *optional*, defaults to `None`):
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
        time_cond_proj_dim (`int`, *optional*, defaults to `None`):
            The dimension of `cond_proj` layer in the timestep embedding.
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
            `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
            embeddings with the class embeddings.
        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
            Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
            `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
            otherwise.
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["MatryoshkaTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 3,
        out_channels: int = 3,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
        only_cross_attention: Union[bool, Tuple[bool]] = False,
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: Union[int, Tuple[int]] = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        dropout: float = 0.0,
        act_fn: str = "silu",
        norm_type: str = "layer_norm",
        norm_num_groups: Optional[int] = 32,
        norm_eps: float = 1e-5,
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
        transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
        reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
        encoder_hid_dim: Optional[int] = None,
        encoder_hid_dim_type: Optional[str] = None,
        attention_head_dim: Union[int, Tuple[int]] = 8,
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
        dual_cross_attention: bool = False,
        use_attention_ffn: bool = True,
        use_linear_projection: bool = False,
        class_embed_type: Optional[str] = None,
        addition_embed_type: Optional[str] = None,
        addition_time_embed_dim: Optional[int] = None,
        num_class_embeds: Optional[int] = None,
        upcast_attention: bool = False,
        resnet_time_scale_shift: str = "default",
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: float = 1.0,
        time_embedding_type: str = "positional",
        time_embedding_dim: Optional[int] = None,
        time_embedding_act_fn: Optional[str] = None,
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
        projection_class_embeddings_input_dim: Optional[int] = None,
        attention_type: str = "default",
        attention_pre_only: bool = False,
        masked_cross_attention: bool = False,
        micro_conditioning_scale: int = None,
        class_embeddings_concat: bool = False,
        mid_block_only_cross_attention: Optional[bool] = None,
        cross_attention_norm: Optional[str] = None,
        addition_embed_type_num_heads: int = 64,
        temporal_mode: bool = False,
        temporal_spatial_ds: bool = False,
        skip_cond_emb: bool = False,
        nesting: Optional[int] = False,
    ):
        super().__init__()

        self.sample_size = sample_size

        if num_attention_heads is not None:
            raise ValueError(
                "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
            )

        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

        # Check inputs
        self._check_config(
            down_block_types=down_block_types,
            up_block_types=up_block_types,
            only_cross_attention=only_cross_attention,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            cross_attention_dim=cross_attention_dim,
            transformer_layers_per_block=transformer_layers_per_block,
            reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
            attention_head_dim=attention_head_dim,
            num_attention_heads=num_attention_heads,
        )

        # input
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )

        # time
        time_embed_dim, timestep_input_dim = self._set_time_proj(
            time_embedding_type,
            block_out_channels=block_out_channels,
            flip_sin_to_cos=flip_sin_to_cos,
            freq_shift=freq_shift,
            time_embedding_dim=time_embedding_dim,
        )

        self.time_embedding = TimestepEmbedding(
            time_embedding_dim // 4 if time_embedding_dim is not None else timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )

        self._set_encoder_hid_proj(
            encoder_hid_dim_type,
            cross_attention_dim=cross_attention_dim,
            encoder_hid_dim=encoder_hid_dim,
        )

        # class embedding
        self._set_class_embedding(
            class_embed_type,
            act_fn=act_fn,
            num_class_embeds=num_class_embeds,
            projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
            time_embed_dim=time_embed_dim,
            timestep_input_dim=timestep_input_dim,
        )

        self._set_add_embedding(
            addition_embed_type,
            addition_embed_type_num_heads=addition_embed_type_num_heads,
            addition_time_embed_dim=timestep_input_dim,
            cross_attention_dim=cross_attention_dim,
            encoder_hid_dim=encoder_hid_dim,
            flip_sin_to_cos=flip_sin_to_cos,
            freq_shift=freq_shift,
            projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
            time_embed_dim=time_embed_dim,
        )

        if time_embedding_act_fn is None:
            self.time_embed_act = None
        else:
            self.time_embed_act = get_activation(time_embedding_act_fn)

        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

        if isinstance(only_cross_attention, bool):
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

            only_cross_attention = [only_cross_attention] * len(down_block_types)

        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)

        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block[i],
                transformer_layers_per_block=transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=blocks_time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                norm_type=norm_type,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim[i],
                num_attention_heads=num_attention_heads[i],
                downsample_padding=downsample_padding,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                only_cross_attention=only_cross_attention[i],
                upcast_attention=upcast_attention,
                resnet_time_scale_shift=resnet_time_scale_shift,
                attention_type=attention_type,
                attention_pre_only=attention_pre_only,
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
                cross_attention_norm=cross_attention_norm,
                use_attention_ffn=use_attention_ffn,
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
                dropout=dropout,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = get_mid_block(
            mid_block_type,
            temb_channels=blocks_time_embed_dim,
            in_channels=block_out_channels[-1],
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            norm_type=norm_type,
            resnet_groups=norm_num_groups,
            output_scale_factor=mid_block_scale_factor,
            transformer_layers_per_block=1,
            num_attention_heads=num_attention_heads[-1],
            cross_attention_dim=cross_attention_dim[-1],
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            mid_block_only_cross_attention=mid_block_only_cross_attention,
            upcast_attention=upcast_attention,
            resnet_time_scale_shift=resnet_time_scale_shift,
            attention_type=attention_type,
            attention_pre_only=attention_pre_only,
            resnet_skip_time_act=resnet_skip_time_act,
            cross_attention_norm=cross_attention_norm,
            attention_head_dim=attention_head_dim[-1],
            dropout=dropout,
        )

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        reversed_num_attention_heads = list(reversed(num_attention_heads))
        reversed_layers_per_block = list(reversed(layers_per_block))
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
        reversed_transformer_layers_per_block = (
            list(reversed(transformer_layers_per_block))
            if reverse_transformer_layers_per_block is None
            else reverse_transformer_layers_per_block
        )
        only_cross_attention = list(reversed(only_cross_attention))

        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
                num_layers=reversed_layers_per_block[i] + 1,
                transformer_layers_per_block=reversed_transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=blocks_time_embed_dim,
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                norm_type=norm_type,
                resolution_idx=i,
                resnet_groups=norm_num_groups,
                cross_attention_dim=reversed_cross_attention_dim[i],
                num_attention_heads=reversed_num_attention_heads[i],
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                only_cross_attention=only_cross_attention[i],
                upcast_attention=upcast_attention,
                resnet_time_scale_shift=resnet_time_scale_shift,
                attention_type=attention_type,
                attention_pre_only=attention_pre_only,
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
                cross_attention_norm=cross_attention_norm,
                use_attention_ffn=use_attention_ffn,
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
                dropout=dropout,
            )
            self.up_blocks.append(up_block)

        # out
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )

            self.conv_act = get_activation(act_fn)

        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )

        self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)

        self.is_temporal = []

    def _check_config(
        self,
        down_block_types: Tuple[str],
        up_block_types: Tuple[str],
        only_cross_attention: Union[bool, Tuple[bool]],
        block_out_channels: Tuple[int],
        layers_per_block: Union[int, Tuple[int]],
        cross_attention_dim: Union[int, Tuple[int]],
        transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
        reverse_transformer_layers_per_block: bool,
        attention_head_dim: int,
        num_attention_heads: Optional[Union[int, Tuple[int]]],
    ):
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
            )
        if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
            for layer_number_per_block in transformer_layers_per_block:
                if isinstance(layer_number_per_block, list):
                    raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")

    def _set_time_proj(
        self,
        time_embedding_type: str,
        block_out_channels: int,
        flip_sin_to_cos: bool,
        freq_shift: float,
        time_embedding_dim: int,
    ) -> Tuple[int, int]:
        if time_embedding_type == "fourier":
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 4

            if self.model_type == "unet":
                self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            elif self.model_type == "nested_unet" and self.config.micro_conditioning_scale == 256:
                self.time_proj = Timesteps(block_out_channels[0] * 4, flip_sin_to_cos, freq_shift)
            elif self.model_type == "nested_unet" and self.config.micro_conditioning_scale == 1024:
                self.time_proj = Timesteps(block_out_channels[0] * 4 * 2, flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
            )

        return time_embed_dim, timestep_input_dim

    def _set_encoder_hid_proj(
        self,
        encoder_hid_dim_type: Optional[str],
        cross_attention_dim: Union[int, Tuple[int]],
        encoder_hid_dim: Optional[int],
    ):
        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
            self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
            logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )
        elif encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2
            self.encoder_hid_proj = ImageProjection(
                image_embed_dim=encoder_hid_dim,
                cross_attention_dim=cross_attention_dim,
            )
        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim_type`: {encoder_hid_dim_type} must be None, 'text_proj', 'text_image_proj', or 'image_proj'."
            )
        else:
            self.encoder_hid_proj = None

    def _set_class_embedding(
        self,
        class_embed_type: Optional[str],
        act_fn: str,
        num_class_embeds: Optional[int],
        projection_class_embeddings_input_dim: Optional[int],
        time_embed_dim: int,
        timestep_input_dim: int,
    ):
        if class_embed_type is None and num_class_embeds is not None:
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
        else:
            self.class_embedding = None

    def _set_add_embedding(
        self,
        addition_embed_type: str,
        addition_embed_type_num_heads: int,
        addition_time_embed_dim: Optional[int],
        flip_sin_to_cos: bool,
        freq_shift: float,
        cross_attention_dim: Optional[int],
        encoder_hid_dim: Optional[int],
        projection_class_embeddings_input_dim: Optional[int],
        time_embed_dim: int,
    ):
        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
            )
        elif addition_embed_type == "matryoshka":
            self.add_embedding = MatryoshkaCombinedTimestepTextEmbedding(
                self.config.time_embedding_dim // 4
                if self.config.time_embedding_dim is not None
                else addition_time_embed_dim,
                cross_attention_dim,
                time_embed_dim,
                self.model_type,  # if not self.config.nesting else "inner_" + self.model_type,
            )
        elif addition_embed_type == "text_image":
            # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
            self.add_embedding = TextImageTimeEmbedding(
                text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
            )
        elif addition_embed_type == "text_time":
            self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
            self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
        elif addition_embed_type == "image":
            # Kandinsky 2.2
            self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
        elif addition_embed_type == "image_hint":
            # Kandinsky 2.2 ControlNet
            self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
        elif addition_embed_type is not None:
            raise ValueError(
                f"`addition_embed_type`: {addition_embed_type} must be None, 'text', 'text_image', 'text_time', 'image', or 'image_hint'."
            )

    def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
        if attention_type in ["gated", "gated-text-image"]:
            positive_len = 768
            if isinstance(cross_attention_dim, int):
                positive_len = cross_attention_dim
            elif isinstance(cross_attention_dim, (list, tuple)):
                positive_len = cross_attention_dim[0]

            feature_type = "text-only" if attention_type == "gated" else "text-image"
            self.position_net = GLIGENTextBoundingboxProjection(
                positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
            )

    @property
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

        self.set_attn_processor(processor)

    def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
        r"""
        Enable sliced attention computation.

        When this option is enabled, the attention module splits the input tensor in slices to compute attention in
        several steps. This is useful for saving some memory in exchange for a small decrease in speed.

        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        sliceable_head_dims = []

        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
                fn_recursive_retrieve_sliceable_dims(child)

        # retrieve number of attention layers
        for module in self.children():
            fn_recursive_retrieve_sliceable_dims(module)

        num_sliceable_layers = len(sliceable_head_dims)

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
            slice_size = num_sliceable_layers * [1]

        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )

        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stage blocks where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
        are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        for i, upsample_block in enumerate(self.up_blocks):
            setattr(upsample_block, "s1", s1)
            setattr(upsample_block, "s2", s2)
            setattr(upsample_block, "b1", b1)
            setattr(upsample_block, "b2", b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism."""
        freeu_keys = {"s1", "s2", "b1", "b2"}
        for i, upsample_block in enumerate(self.up_blocks):
            for k in freeu_keys:
                if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
                    setattr(upsample_block, k, None)

    def fuse_qkv_projections(self):
        """
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

        self.set_attn_processor(FusedAttnProcessor2_0())

    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

    def get_time_embed(
        self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
    ) -> Optional[torch.Tensor]:
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)
        # `Timesteps` does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=sample.dtype)
        return t_emb

    def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
        class_emb = None
        if self.class_embedding is not None:
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
        return class_emb

    def get_aug_embed(
        self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
    ) -> Optional[torch.Tensor]:
        aug_emb = None
        if self.config.addition_embed_type == "text":
            aug_emb = self.add_embedding(encoder_hidden_states)
        elif self.config.addition_embed_type == "matryoshka":
            aug_emb = self.add_embedding(emb, encoder_hidden_states, added_cond_kwargs)
        elif self.config.addition_embed_type == "text_image":
            # Kandinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )

            image_embs = added_cond_kwargs.get("image_embeds")
            text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
            aug_emb = self.add_embedding(text_embs, image_embs)
        elif self.config.addition_embed_type == "text_time":
            # SDXL - style
            if "text_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
                )
            text_embeds = added_cond_kwargs.get("text_embeds")
            if "time_ids" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
                )
            time_ids = added_cond_kwargs.get("time_ids")
            time_embeds = self.add_time_proj(time_ids.flatten())
            time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
            add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
            add_embeds = add_embeds.to(emb.dtype)
            aug_emb = self.add_embedding(add_embeds)
        elif self.config.addition_embed_type == "image":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            aug_emb = self.add_embedding(image_embs)
        elif self.config.addition_embed_type == "image_hint":
            # Kandinsky 2.2 ControlNet - style
            if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            hint = added_cond_kwargs.get("hint")
            aug_emb = self.add_embedding(image_embs, hint)
        return aug_emb

    def process_encoder_hidden_states(
        self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
    ) -> torch.Tensor:
        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
            # Kandinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )

            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(image_embeds)
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )

            if hasattr(self, "text_encoder_hid_proj") and self.text_encoder_hid_proj is not None:
                encoder_hidden_states = self.text_encoder_hid_proj(encoder_hidden_states)

            image_embeds = added_cond_kwargs.get("image_embeds")
            image_embeds = self.encoder_hid_proj(image_embeds)
            encoder_hidden_states = (encoder_hidden_states, image_embeds)
        return encoder_hidden_states

    @property
    def model_type(self) -> str:
        return "unet"

    def forward(
        self,
        sample: torch.Tensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        cond_emb: Optional[torch.Tensor] = None,
        class_labels: Optional[torch.Tensor] = None,
        timestep_cond: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
        down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        return_dict: bool = True,
        from_nested: bool = False,
    ) -> Union[MatryoshkaUNet2DConditionOutput, Tuple]:
        r"""
        The [`NestedUNet2DConditionModel`] forward method.

        Args:
            sample (`torch.Tensor`):
                The noisy input tensor with the following shape `(batch, channel, height, width)`.
            timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.Tensor`):
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
            class_labels (`torch.Tensor`, *optional*, defaults to `None`):
                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
            timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
                Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
                through the `self.time_embedding` layer to obtain the timestep embeddings.
            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.
            down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
                A tuple of tensors that if specified are added to the residuals of down unet blocks.
            mid_block_additional_residual: (`torch.Tensor`, *optional*):
                A tensor that if specified is added to the residual of the middle unet block.
            down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
                additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
            encoder_attention_mask (`torch.Tensor`):
                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
                which adds large negative values to the attention scores corresponding to "discard" tokens.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~NestedUNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            [`~NestedUNet2DConditionOutput`] or `tuple`:
                If `return_dict` is True, an [`~NestedUNet2DConditionOutput`] is returned,
                otherwise a `tuple` is returned where the first element is the sample tensor.
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if self.config.nesting:
            sample, sample_feat = sample
        if isinstance(sample, list) and len(sample) == 1:
            sample = sample[0]

        for dim in sample.shape[-2:]:
            if dim % default_overall_up_factor != 0:
                # Forward upsample size to force interpolation output size.
                forward_upsample_size = True
                break

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        t_emb = self.get_time_embed(sample=sample, timestep=timestep)
        emb = self.time_embedding(t_emb, timestep_cond)

        class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
        if class_emb is not None:
            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb

        added_cond_kwargs = added_cond_kwargs or {}
        added_cond_kwargs["masked_cross_attention"] = self.config.masked_cross_attention
        added_cond_kwargs["micro_conditioning_scale"] = self.config.micro_conditioning_scale
        added_cond_kwargs["from_nested"] = from_nested
        added_cond_kwargs["conditioning_mask"] = encoder_attention_mask

        if not from_nested:
            encoder_hidden_states = self.process_encoder_hidden_states(
                encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
            )

            aug_emb, encoder_attention_mask, cond_emb = self.get_aug_embed(
                emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
            )
        else:
            aug_emb, encoder_attention_mask, _ = self.get_aug_embed(
                emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
            )

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample[0][0].dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        if self.config.addition_embed_type == "image_hint":
            aug_emb, hint = aug_emb
            sample = torch.cat([sample, hint], dim=1)

        emb = emb + aug_emb + cond_emb if aug_emb is not None else emb

        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

        # 2. pre-process
        sample = self.conv_in(sample)
        if self.config.nesting:
            sample = sample + sample_feat

        # 2.5 GLIGEN position net
        if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
            cross_attention_kwargs = cross_attention_kwargs.copy()
            gligen_args = cross_attention_kwargs.pop("gligen")
            cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}

        # 3. down
        # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
        # to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
        if cross_attention_kwargs is not None:
            cross_attention_kwargs = cross_attention_kwargs.copy()
            lora_scale = cross_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)

        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
        # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
        is_adapter = down_intrablock_additional_residuals is not None
        # maintain backward compatibility for legacy usage, where
        #       T2I-Adapter and ControlNet both use down_block_additional_residuals arg
        #       but can only use one or the other
        if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
            deprecate(
                "T2I should not use down_block_additional_residuals",
                "1.3.0",
                "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
                       and will be removed in diffusers 1.3.0.  `down_block_additional_residuals` should only be used \
                       for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
                standard_warn=False,
            )
            down_intrablock_additional_residuals = down_block_additional_residuals
            is_adapter = True

        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                # For t2i-adapter CrossAttnDownBlock2D
                additional_residuals = {}
                if is_adapter and len(down_intrablock_additional_residuals) > 0:
                    additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)

                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                    **additional_residuals,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
                if is_adapter and len(down_intrablock_additional_residuals) > 0:
                    sample += down_intrablock_additional_residuals.pop(0)

            down_block_res_samples += res_samples

        if is_controlnet:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

        # 4. mid
        if self.mid_block is not None:
            if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
                sample = self.mid_block(
                    sample,
                    emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                )
            else:
                sample = self.mid_block(sample, emb)

            # To support T2I-Adapter-XL
            if (
                is_adapter
                and len(down_intrablock_additional_residuals) > 0
                and sample.shape == down_intrablock_additional_residuals[0].shape
            ):
                sample += down_intrablock_additional_residuals.pop(0)

        if is_controlnet:
            sample = sample + mid_block_additional_residual

        # 5. up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                )

        sample_inner = sample

        # 6. post-process
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample_inner)
            sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (sample,)

        if self.config.nesting:
            return MatryoshkaUNet2DConditionOutput(sample=sample, sample_inner=sample_inner)

        return MatryoshkaUNet2DConditionOutput(sample=sample)


class NestedUNet2DConditionOutput(BaseOutput):
    """
    Output type for the [`NestedUNet2DConditionModel`] model.
    """

    sample: list = None
    sample_inner: torch.Tensor = None


class NestedUNet2DConditionModel(MatryoshkaUNet2DConditionModel):
    """
    Nested UNet model with condition for image denoising.
    """

    @register_to_config
    def __init__(
        self,
        in_channels=3,
        out_channels=3,
        block_out_channels=(64, 128, 256),
        cross_attention_dim=2048,
        resnet_time_scale_shift="scale_shift",
        down_block_types=("DownBlock2D", "DownBlock2D", "DownBlock2D"),
        up_block_types=("UpBlock2D", "UpBlock2D", "UpBlock2D"),
        mid_block_type=None,
        nesting=False,
        flip_sin_to_cos=False,
        transformer_layers_per_block=[0, 0, 0],
        layers_per_block=[2, 2, 1],
        masked_cross_attention=True,
        micro_conditioning_scale=256,
        addition_embed_type="matryoshka",
        skip_normalization=True,
        time_embedding_dim=1024,
        skip_inner_unet_input=False,
        temporal_mode=False,
        temporal_spatial_ds=False,
        initialize_inner_with_pretrained=None,
        use_attention_ffn=False,
        act_fn="silu",
        addition_embed_type_num_heads=64,
        addition_time_embed_dim=None,
        attention_head_dim=8,
        attention_pre_only=False,
        attention_type="default",
        center_input_sample=False,
        class_embed_type=None,
        class_embeddings_concat=False,
        conv_in_kernel=3,
        conv_out_kernel=3,
        cross_attention_norm=None,
        downsample_padding=1,
        dropout=0.0,
        dual_cross_attention=False,
        encoder_hid_dim=None,
        encoder_hid_dim_type=None,
        freq_shift=0,
        mid_block_only_cross_attention=None,
        mid_block_scale_factor=1,
        norm_eps=1e-05,
        norm_num_groups=32,
        norm_type="layer_norm",
        num_attention_heads=None,
        num_class_embeds=None,
        only_cross_attention=False,
        projection_class_embeddings_input_dim=None,
        resnet_out_scale_factor=1.0,
        resnet_skip_time_act=False,
        reverse_transformer_layers_per_block=None,
        sample_size=None,
        skip_cond_emb=False,
        time_cond_proj_dim=None,
        time_embedding_act_fn=None,
        time_embedding_type="positional",
        timestep_post_act=None,
        upcast_attention=False,
        use_linear_projection=False,
        is_temporal=None,
        inner_config={},
    ):
        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            block_out_channels=block_out_channels,
            cross_attention_dim=cross_attention_dim,
            resnet_time_scale_shift=resnet_time_scale_shift,
            down_block_types=down_block_types,
            up_block_types=up_block_types,
            mid_block_type=mid_block_type,
            nesting=nesting,
            flip_sin_to_cos=flip_sin_to_cos,
            transformer_layers_per_block=transformer_layers_per_block,
            layers_per_block=layers_per_block,
            masked_cross_attention=masked_cross_attention,
            micro_conditioning_scale=micro_conditioning_scale,
            addition_embed_type=addition_embed_type,
            time_embedding_dim=time_embedding_dim,
            temporal_mode=temporal_mode,
            temporal_spatial_ds=temporal_spatial_ds,
            use_attention_ffn=use_attention_ffn,
            sample_size=sample_size,
        )
        # self.config.inner_config.conditioning_feature_dim = self.config.conditioning_feature_dim

        if "inner_config" not in self.config.inner_config:
            self.inner_unet = MatryoshkaUNet2DConditionModel(**self.config.inner_config)
        else:
            self.inner_unet = NestedUNet2DConditionModel(**self.config.inner_config)

        if not self.config.skip_inner_unet_input:
            self.in_adapter = nn.Conv2d(
                self.config.block_out_channels[-1],
                self.config.inner_config["block_out_channels"][0],
                kernel_size=3,
                padding=1,
            )
        else:
            self.in_adapter = None
        self.out_adapter = nn.Conv2d(
            self.config.inner_config["block_out_channels"][0],
            self.config.block_out_channels[-1],
            kernel_size=3,
            padding=1,
        )

        self.is_temporal = [self.config.temporal_mode and (not self.config.temporal_spatial_ds)]
        if hasattr(self.inner_unet, "is_temporal"):
            self.is_temporal = self.is_temporal + self.inner_unet.is_temporal

        nest_ratio = int(2 ** (len(self.config.block_out_channels) - 1))
        if self.is_temporal[0]:
            nest_ratio = int(np.sqrt(nest_ratio))
        if self.inner_unet.config.nesting and self.inner_unet.model_type == "nested_unet":
            self.nest_ratio = [nest_ratio * self.inner_unet.nest_ratio[0]] + self.inner_unet.nest_ratio
        else:
            self.nest_ratio = [nest_ratio]

        # self.register_modules(inner_unet=self.inner_unet)

    @property
    def model_type(self):
        return "nested_unet"

    def forward(
        self,
        sample: torch.Tensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        cond_emb: Optional[torch.Tensor] = None,
        from_nested: bool = False,
        class_labels: Optional[torch.Tensor] = None,
        timestep_cond: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
        down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ) -> Union[MatryoshkaUNet2DConditionOutput, Tuple]:
        r"""
        The [`NestedUNet2DConditionModel`] forward method.

        Args:
            sample (`torch.Tensor`):
                The noisy input tensor with the following shape `(batch, channel, height, width)`.
            timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.Tensor`):
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
            class_labels (`torch.Tensor`, *optional*, defaults to `None`):
                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
            timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
                Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
                through the `self.time_embedding` layer to obtain the timestep embeddings.
            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.
            down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
                A tuple of tensors that if specified are added to the residuals of down unet blocks.
            mid_block_additional_residual: (`torch.Tensor`, *optional*):
                A tensor that if specified is added to the residual of the middle unet block.
            down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
                additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
            encoder_attention_mask (`torch.Tensor`):
                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
                which adds large negative values to the attention scores corresponding to "discard" tokens.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~NestedUNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            [`~NestedUNet2DConditionOutput`] or `tuple`:
                If `return_dict` is True, an [`~NestedUNet2DConditionOutput`] is returned,
                otherwise a `tuple` is returned where the first element is the sample tensor.
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if self.config.nesting:
            sample, sample_feat = sample
        if isinstance(sample, list) and len(sample) == 1:
            sample = sample[0]

        # 2. input layer (normalize the input)
        bsz = [x.size(0) for x in sample]
        bh, bl = bsz[0], bsz[1]
        x_t_low, sample = sample[1:], sample[0]

        for dim in sample.shape[-2:]:
            if dim % default_overall_up_factor != 0:
                # Forward upsample size to force interpolation output size.
                forward_upsample_size = True
                break

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        t_emb = self.get_time_embed(sample=sample, timestep=timestep)
        emb = self.time_embedding(t_emb, timestep_cond)

        class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
        if class_emb is not None:
            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb

        if self.inner_unet.model_type == "unet":
            added_cond_kwargs = added_cond_kwargs or {}
            added_cond_kwargs["masked_cross_attention"] = self.inner_unet.config.masked_cross_attention
            added_cond_kwargs["micro_conditioning_scale"] = self.config.micro_conditioning_scale
            added_cond_kwargs["conditioning_mask"] = encoder_attention_mask

            if not self.config.nesting:
                encoder_hidden_states = self.inner_unet.process_encoder_hidden_states(
                    encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
                )

                aug_emb_inner_unet, cond_mask, cond_emb = self.inner_unet.get_aug_embed(
                    emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
                )
                added_cond_kwargs["masked_cross_attention"] = self.config.masked_cross_attention
                aug_emb, __, _ = self.get_aug_embed(
                    emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
                )
            else:
                aug_emb, cond_mask, _ = self.get_aug_embed(
                    emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
                )

        elif self.inner_unet.model_type == "nested_unet":
            added_cond_kwargs = added_cond_kwargs or {}
            added_cond_kwargs["masked_cross_attention"] = self.inner_unet.inner_unet.config.masked_cross_attention
            added_cond_kwargs["micro_conditioning_scale"] = self.config.micro_conditioning_scale
            added_cond_kwargs["conditioning_mask"] = encoder_attention_mask

            encoder_hidden_states = self.inner_unet.inner_unet.process_encoder_hidden_states(
                encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
            )

            aug_emb_inner_unet, cond_mask, cond_emb = self.inner_unet.inner_unet.get_aug_embed(
                emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
            )

            aug_emb, __, _ = self.get_aug_embed(
                emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
            )

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        if self.config.addition_embed_type == "image_hint":
            aug_emb, hint = aug_emb
            sample = torch.cat([sample, hint], dim=1)

        emb = emb + aug_emb + cond_emb if aug_emb is not None else emb

        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

        if not self.config.skip_normalization:
            sample = sample / sample.std((1, 2, 3), keepdims=True)
        if isinstance(sample, list) and len(sample) == 1:
            sample = sample[0]
        sample = self.conv_in(sample)
        if self.config.nesting:
            sample = sample + sample_feat

        # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
        # to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
        if cross_attention_kwargs is not None:
            cross_attention_kwargs = cross_attention_kwargs.copy()
            lora_scale = cross_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)

        # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
        is_adapter = down_intrablock_additional_residuals is not None
        # maintain backward compatibility for legacy usage, where
        #       T2I-Adapter and ControlNet both use down_block_additional_residuals arg
        #       but can only use one or the other
        if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
            deprecate(
                "T2I should not use down_block_additional_residuals",
                "1.3.0",
                "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
                       and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
                       for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
                standard_warn=False,
            )
            down_intrablock_additional_residuals = down_block_additional_residuals
            is_adapter = True

        # 3. downsample blocks in the outer layers
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                # For t2i-adapter CrossAttnDownBlock2D
                additional_residuals = {}
                if is_adapter and len(down_intrablock_additional_residuals) > 0:
                    additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)

                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb[:bh],
                    encoder_hidden_states=encoder_hidden_states[:bh],
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=cond_mask[:bh] if cond_mask is not None else cond_mask,
                    **additional_residuals,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
                if is_adapter and len(down_intrablock_additional_residuals) > 0:
                    sample += down_intrablock_additional_residuals.pop(0)

            down_block_res_samples += res_samples

        # 4. run inner unet
        x_inner = self.in_adapter(sample) if self.in_adapter is not None else None
        x_inner = (
            torch.cat([x_inner, x_inner.new_zeros(bl - bh, *x_inner.size()[1:])], 0) if bh < bl else x_inner
        )  # pad zeros for low-resolutions
        inner_unet_output = self.inner_unet(
            (x_t_low, x_inner),
            timestep,
            cond_emb=cond_emb,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=cond_mask,
            from_nested=True,
        )
        x_low, x_inner = inner_unet_output.sample, inner_unet_output.sample_inner
        x_inner = self.out_adapter(x_inner)
        sample = sample + x_inner[:bh] if bh < bl else sample + x_inner

        # 5. upsample blocks in the outer layers
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb[:bh],
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states[:bh],
                    cross_attention_kwargs=cross_attention_kwargs,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                    encoder_attention_mask=cond_mask[:bh] if cond_mask is not None else cond_mask,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                )

        # 6. post-process
        if self.conv_norm_out:
            sample_out = self.conv_norm_out(sample)
            sample_out = self.conv_act(sample_out)
        sample_out = self.conv_out(sample_out)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        # 7. output both low and high-res output
        if isinstance(x_low, list):
            out = [sample_out] + x_low
        else:
            out = [sample_out, x_low]
        if self.config.nesting:
            return NestedUNet2DConditionOutput(sample=out, sample_inner=sample)
        if not return_dict:
            return (out,)
        else:
            return NestedUNet2DConditionOutput(sample=out)


@dataclass
class MatryoshkaPipelineOutput(BaseOutput):
    """
    Output class for Matryoshka pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[Image.Image], List[List[Image.Image]], np.ndarray, List[np.ndarray]]


class MatryoshkaPipeline(
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    StableDiffusionLoraLoaderMixin,
    IPAdapterMixin,
    FromSingleFileMixin,
):
    r"""
    Pipeline for text-to-image generation using Matryoshka Diffusion Models.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    Args:
        text_encoder ([`~transformers.T5EncoderModel`]):
            Frozen text-encoder ([flan-t5-xl](https://huggingface.co/google/flan-t5-xl)).
        tokenizer ([`~transformers.T5Tokenizer`]):
            A `T5Tokenizer` to tokenize text.
        unet ([`MatryoshkaUNet2DConditionModel`]):
            A `MatryoshkaUNet2DConditionModel` to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`MatryoshkaDDIMScheduler`] and other schedulers with proper modifications, see an example usage in README.md.
        feature_extractor ([`~transformers.<AnImageProcessor>`]):
            A `AnImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """

    model_cpu_offload_seq = "text_encoder->image_encoder->unet"
    _optional_components = ["unet", "feature_extractor", "image_encoder"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

    def __init__(
        self,
        text_encoder: T5EncoderModel,
        tokenizer: T5TokenizerFast,
        scheduler: MatryoshkaDDIMScheduler,
        unet: MatryoshkaUNet2DConditionModel = None,
        feature_extractor: CLIPImageProcessor = None,
        image_encoder: CLIPVisionModelWithProjection = None,
        trust_remote_code: bool = False,
        nesting_level: int = 0,
    ):
        super().__init__()

        if nesting_level == 0:
            unet = MatryoshkaUNet2DConditionModel.from_pretrained(
                "tolgacangoz/matryoshka-diffusion-models", subfolder="unet/nesting_level_0"
            )
        elif nesting_level == 1:
            unet = NestedUNet2DConditionModel.from_pretrained(
                "tolgacangoz/matryoshka-diffusion-models", subfolder="unet/nesting_level_1"
            )
        elif nesting_level == 2:
            unet = NestedUNet2DConditionModel.from_pretrained(
                "tolgacangoz/matryoshka-diffusion-models", subfolder="unet/nesting_level_2"
            )
        else:
            raise ValueError("Currently, nesting levels 0, 1, and 2 are supported.")

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        # if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
        #     deprecation_message = (
        #         f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
        #         " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
        #         " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
        #         " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
        #         " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
        #     )
        #     deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
        #     new_config = dict(scheduler.config)
        #     new_config["clip_sample"] = False
        #     scheduler._internal_dict = FrozenDict(new_config)

        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

        if hasattr(unet, "nest_ratio"):
            scheduler.scales = unet.nest_ratio + [1]
            if nesting_level == 2:
                scheduler.schedule_shifted_power = 2.0

        self.register_modules(
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.register_to_config(nesting_level=nesting_level)
        self.image_processor = VaeImageProcessor(do_resize=False)

    def change_nesting_level(self, nesting_level: int):
        if nesting_level == 0:
            if hasattr(self.unet, "nest_ratio"):
                self.scheduler.scales = None
            self.unet = MatryoshkaUNet2DConditionModel.from_pretrained(
                "tolgacangoz/matryoshka-diffusion-models", subfolder="unet/nesting_level_0"
            ).to(self.device)
            self.config.nesting_level = 0
        elif nesting_level == 1:
            self.unet = NestedUNet2DConditionModel.from_pretrained(
                "tolgacangoz/matryoshka-diffusion-models", subfolder="unet/nesting_level_1"
            ).to(self.device)
            self.config.nesting_level = 1
            self.scheduler.scales = self.unet.nest_ratio + [1]
            self.scheduler.schedule_shifted_power = 1.0
        elif nesting_level == 2:
            self.unet = NestedUNet2DConditionModel.from_pretrained(
                "tolgacangoz/matryoshka-diffusion-models", subfolder="unet/nesting_level_2"
            ).to(self.device)
            self.config.nesting_level = 2
            self.scheduler.scales = self.unet.nest_ratio + [1]
            self.scheduler.schedule_shifted_power = 2.0
        else:
            raise ValueError("Currently, nesting levels 0, 1, and 2 are supported.")

        gc.collect()
        torch.cuda.empty_cache()

    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because FLAN-T5-XL for this pipeline can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                prompt_attention_mask = text_inputs.attention_mask.to(device)
            else:
                prompt_attention_mask = None

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            uncond_input = self.tokenizer(
                uncond_tokens,
                return_tensors="pt",
            )
            uncond_input_ids = uncond_input.input_ids

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                negative_prompt_attention_mask = uncond_input.attention_mask.to(device)
            else:
                negative_prompt_attention_mask = None

        if not do_classifier_free_guidance:
            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=prompt_attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
        else:
            max_len = max(len(text_input_ids[0]), len(uncond_input_ids[0]))
            if len(text_input_ids[0]) < max_len:
                text_input_ids = torch.cat(
                    [text_input_ids, torch.zeros(batch_size, max_len - len(text_input_ids[0]), dtype=torch.long)],
                    dim=1,
                )
                prompt_attention_mask = torch.cat(
                    [
                        prompt_attention_mask,
                        torch.zeros(
                            batch_size, max_len - len(prompt_attention_mask[0]), dtype=torch.long, device=device
                        ),
                    ],
                    dim=1,
                )
            elif len(uncond_input_ids[0]) < max_len:
                uncond_input_ids = torch.cat(
                    [uncond_input_ids, torch.zeros(batch_size, max_len - len(uncond_input_ids[0]), dtype=torch.long)],
                    dim=1,
                )
                negative_prompt_attention_mask = torch.cat(
                    [
                        negative_prompt_attention_mask,
                        torch.zeros(
                            batch_size,
                            max_len - len(negative_prompt_attention_mask[0]),
                            dtype=torch.long,
                            device=device,
                        ),
                    ],
                    dim=1,
                )
            cfg_input_ids = torch.cat([uncond_input_ids, text_input_ids], dim=0)
            cfg_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
            prompt_embeds = self.text_encoder(
                cfg_input_ids.to(device),
                attention_mask=cfg_attention_mask,
            )
            prompt_embeds = prompt_embeds[0]

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        if self.text_encoder is not None:
            if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        if not do_classifier_free_guidance:
            return prompt_embeds, None, prompt_attention_mask, None
        return prompt_embeds[1], prompt_embeds[0], prompt_attention_mask, negative_prompt_attention_mask

    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    def prepare_ip_adapter_image_embeds(
        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
    ):
        image_embeds = []
        if do_classifier_free_guidance:
            negative_image_embeds = []
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]

            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
                )

            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, device, 1, output_hidden_state
                )

                image_embeds.append(single_image_embeds[None, :])
                if do_classifier_free_guidance:
                    negative_image_embeds.append(single_negative_image_embeds[None, :])
        else:
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
                    negative_image_embeds.append(single_negative_image_embeds)
                image_embeds.append(single_image_embeds)

        ip_adapter_image_embeds = []
        for i, single_image_embeds in enumerate(image_embeds):
            single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
            if do_classifier_free_guidance:
                single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
                single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)

            single_image_embeds = single_image_embeds.to(device=device)
            ip_adapter_image_embeds.append(single_image_embeds)

        return ip_adapter_image_embeds

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
                )

    def prepare_latents(
        self, batch_size, num_channels_latents, height, width, dtype, device, generator, scales, latents=None
    ):
        shape = (
            batch_size,
            num_channels_latents,
            int(height),
            int(width),
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
            if scales is not None:
                out = [latents]
                for s in scales[1:]:
                    ratio = scales[0] // s
                    sample_low = F.avg_pool2d(latents, ratio) * ratio
                    sample_low = sample_low.normal_(generator=generator)
                    out += [sample_low]
                latents = out
        else:
            if scales is not None:
                latents = [latent.to(device=device) for latent in latents]
            else:
                latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        if scales is not None:
            latents = [latent * self.scheduler.init_noise_sigma for latent in latents]
        else:
            latents = latents * self.scheduler.init_noise_sigma
        return latents

    # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
    def get_guidance_scale_embedding(
        self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
    ) -> torch.Tensor:
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            w (`torch.Tensor`):
                Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
            embedding_dim (`int`, *optional*, defaults to 512):
                Dimension of the embeddings to generate.
            dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
                Data type of the generated embeddings.

        Returns:
            `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        sigmas: List[float] = None,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size`):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size`):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            sigmas (`List[float]`, *optional*):
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
                will be used.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            guidance_rescale (`float`, *optional*, defaults to 0.0):
                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
                using zero terminal SNR.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~MatryoshkaPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~MatryoshkaPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size
        width = width or self.unet.config.sample_size
        # to deal with lora scaling and other possible forward hooks

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
        lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )

        (
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            clip_skip=self.clip_skip,
        )

        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds.unsqueeze(0), prompt_embeds.unsqueeze(0)])
            attention_masks = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
        else:
            attention_masks = prompt_attention_mask

        prompt_embeds = prompt_embeds * attention_masks.unsqueeze(-1)

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps, sigmas
        )
        timesteps = timesteps[:-1]

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            self.scheduler.scales,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
        extra_step_kwargs |= {"use_clipped_model_output": True}

        # 6.1 Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
            else None
        )

        # 6.2 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                if self.do_classifier_free_guidance and isinstance(latents, list):
                    latent_model_input = [latent.repeat(2, 1, 1, 1) for latent in latents]
                elif self.do_classifier_free_guidance:
                    latent_model_input = latents.repeat(2, 1, 1, 1)
                else:
                    latent_model_input = latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t - 1,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=self.cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                    encoder_attention_mask=attention_masks,
                    return_dict=False,
                )[0]

                # perform guidance
                if isinstance(noise_pred, list) and self.do_classifier_free_guidance:
                    for i, (noise_pred_uncond, noise_pred_text) in enumerate(noise_pred):
                        noise_pred[i] = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
                elif self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

                if XLA_AVAILABLE:
                    xm.mark_step()

        image = latents

        if self.scheduler.scales is not None:
            for i, img in enumerate(image):
                image[i] = self.image_processor.postprocess(img, output_type=output_type)[0]
        else:
            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return MatryoshkaPipelineOutput(images=image)