File size: 6,560 Bytes
c83614a
 
 
 
 
a6a95d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c83614a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
library_name: transformers
tags: []
---

norbert3-small trained on wikiann (fo/is), sucx3 (se), dane (da) and norne (nb/nn)

added a custom clf head along with a character-level cnn for adding a tiny extra signal for the classification.

results:
```css
Eval on wikiann - fo
index                                  0
tokens      [Byrta, -, Aftur, og, aftur]
ner_tags                 [3, 0, 0, 0, 0]
subset                                fo
dataset                          wikiann
Name: 0, dtype: object
shape: (100, 5)
100%
 5/5 [00:01<00:00,  3.92it/s]
Loss: 0.2276667356491089
O	O
B-ORG	B-ORG
B-ORG	B-ORG
O	O
O	O
O	O
O	O
O	O
O	O
O	O
Validation Loss: 0.26530784368515015
Validation Accuracy: 0.9228951181745751
              precision    recall  f1-score   support

         LOC       0.86      0.81      0.83       154
         ORG       0.67      0.73      0.70       125
         PER       0.87      0.91      0.89        79

   micro avg       0.79      0.80      0.80       358
   macro avg       0.80      0.82      0.81       358
weighted avg       0.79      0.80      0.80       358

________________________________________
Eval on wikiann - is
index                                                 100
tokens      [Beltaþyrill, ''Ceryle, alcyon, '', Sjaldséð]
ner_tags                                  [5, 0, 0, 0, 0]
subset                                                 is
dataset                                           wikiann
Name: 0, dtype: object
shape: (1000, 5)
100%
 50/50 [00:10<00:00,  5.02it/s]
Loss: 0.22668001055717468
O	O
B-LOC	B-LOC
B-LOC	B-LOC
B-LOC	B-LOC
B-LOC	B-LOC
B-LOC	B-LOC
B-LOC	B-LOC
O	O
O	O
O	O
Validation Loss: 0.2526825902983546
Validation Accuracy: 0.9360383541181041
              precision    recall  f1-score   support

         LOC       0.84      0.85      0.84      1983
         ORG       0.81      0.80      0.80      1762
         PER       0.89      0.89      0.89      1020

   micro avg       0.84      0.84      0.84      4765
   macro avg       0.84      0.85      0.85      4765
weighted avg       0.84      0.84      0.84      4765

________________________________________
Eval on dane - default
index                                                    1100
tokens      [To, kendte, russiske, historikere, Andronik, ...
ner_tags    [0, 0, 7, 0, 1, 2, 0, 1, 2, 0, 0, 0, 0, 5, 0, ...
subset                                                default
dataset                                                  dane
Name: 0, dtype: object
shape: (565, 5)
100%
 29/29 [00:06<00:00,  4.75it/s]
Loss: 0.12037135660648346
O	O
O	O
O	O
O	O
O	O
B-MISC	B-MISC
O	O
O	O
B-PER	B-PER
B-PER	B-PER
Validation Loss: 0.11113663488228259
Validation Accuracy: 0.972018408457994
              precision    recall  f1-score   support

         LOC       0.78      0.86      0.82       225
        MISC       0.72      0.52      0.61       333
         ORG       0.72      0.69      0.71       379
         PER       0.96      0.92      0.94       298

   micro avg       0.80      0.73      0.76      1235
   macro avg       0.80      0.75      0.77      1235
weighted avg       0.79      0.73      0.76      1235

________________________________________
Eval on norne - bokmaal-7
index                                                    1665
tokens      [Honnørordene, er, ", dristig, formspråk, ", ,...
ner_tags     [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
subset                                              bokmaal-7
dataset                                                 norne
Name: 0, dtype: object
shape: (1939, 5)
100%
 97/97 [00:20<00:00,  4.56it/s]
Loss: 0.0011819382198154926
O	O
O	O
O	O
O	O
O	O
O	O
O	O
O	O
O	O
O	O
Validation Loss: 0.04194018930858649
Validation Accuracy: 0.9876322465792248
              precision    recall  f1-score   support

         LOC       0.85      0.90      0.87       498
        MISC       0.81      0.74      0.78       363
         ORG       0.77      0.83      0.80       499
         PER       0.93      0.96      0.95       845

   micro avg       0.86      0.88      0.87      2205
   macro avg       0.84      0.86      0.85      2205
weighted avg       0.86      0.88      0.87      2205

________________________________________
Eval on norne - nynorsk-7
index                                                    3604
tokens      [Den, er, mettande, og, smakfull, ,, og, det, ...
ner_tags    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
subset                                              nynorsk-7
dataset                                                 norne
Name: 0, dtype: object
shape: (1511, 5)
100%
 76/76 [00:15<00:00,  5.82it/s]
Loss: 0.0790824368596077
O	O
O	O
O	O
O	O
O	O
O	O
O	O
O	O
O	O
O	O
Validation Loss: 0.05325472676725583
Validation Accuracy: 0.9867293689853402
              precision    recall  f1-score   support

         LOC       0.77      0.91      0.84       365
        MISC       0.80      0.76      0.78       295
         ORG       0.83      0.82      0.82       397
         PER       0.98      0.95      0.97       664

   micro avg       0.87      0.88      0.87      1721
   macro avg       0.85      0.86      0.85      1721
weighted avg       0.87      0.88      0.87      1721

________________________________________
Eval on sucx3_ner - original_cased
index                                                    5115
tokens      [Just, i, dag, är, Saabs, företagsledning, där...
ner_tags    [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
subset                                         original_cased
dataset                                             sucx3_ner
Name: 0, dtype: object
shape: (14383, 5)
100%
 720/720 [02:36<00:00,  5.02it/s]
Loss: 0.04177908971905708
Loss: 0.08230985613484489
Loss: 0.08399457804886486
Loss: 0.06163447560524267
Loss: 0.04787629511204947
Loss: 0.03949779063830233
Loss: 0.03397762095776484
Loss: 0.030040143460689266
O	O
O	O
O	O
O	O
O	O
B-ORG	B-ORG
B-ORG	B-ORG
O	O
O	O
O	O
Validation Loss: 0.02938824465528948
Validation Accuracy: 0.9919830972756728
              precision    recall  f1-score   support

         LOC       0.88      0.91      0.90      4202
        MISC       0.65      0.59      0.62      1899
         ORG       0.74      0.76      0.75      3015
         PER       0.92      0.93      0.92      5778

   micro avg       0.84      0.84      0.84     14894
   macro avg       0.80      0.80      0.80     14894
weighted avg       0.84      0.84      0.84     14894

________________________________________
```