--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:160436 - loss:DenoisingAutoEncoderLoss base_model: google-bert/bert-base-uncased widget: - source_sentence: evolution check, without keeping ui? sentences: - why will unity have a global menu os x style ? - how to increase printers buffer while printing via command line ? - how do i make evolution check and notify new emails , without keeping main ui open ? - source_sentence: has anyone working properly 10.04 on p series? sentences: - what is utnubu ? - has anyone got graphics working properly on 10.04 on a sony vaio p series ? - how much space will the ubuntu 10.04 netbook take after installation ... ... is it compatible with the archos 9 ? - source_sentence: proxy in awesome sentences: - setting http proxy in awesome wm - windows executables are started with archive manager - how to change `` menu key '' to ctrl - source_sentence: delay sentences: - delay when playing sound - how should i synchronize configurations and data across computers ? - how to map a vpn ( tun0 ) network adapter on host ubuntu to a virtualbox guest windows ? - source_sentence: dual boot ubuntu, 10.04 - /home cannot be initialized upon sentences: - how do i write an application install shell script ? - is it possible to view pdfs right in chrome without downloading them first ? - dual boot - ubuntu 9.10 , 10.04 - /home can not be initialized upon startup pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - map - mrr@10 - ndcg@10 co2_eq_emissions: emissions: 81.38533522774361 energy_consumed: 0.209377196998584 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.915 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: SentenceTransformer based on google-bert/bert-base-uncased results: - task: type: reranking name: Reranking dataset: name: AskUbuntu dev type: AskUbuntu-dev metrics: - type: map value: 0.5211319228132101 name: Map - type: mrr@10 value: 0.6525924472353043 name: Mrr@10 - type: ndcg@10 value: 0.570403051922972 name: Ndcg@10 - task: type: reranking name: Reranking dataset: name: AskUbuntu test type: AskUbuntu-test metrics: - type: map value: 0.5812270160114724 name: Map - type: mrr@10 value: 0.7052651414383257 name: Mrr@10 - type: ndcg@10 value: 0.6326339320821251 name: Ndcg@10 --- # SentenceTransformer based on google-bert/bert-base-uncased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) - **Maximum Sequence Length:** 75 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/bert-base-uncased-tsdae-askubuntu") # Run inference sentences = [ 'dual boot ubuntu, 10.04 - /home cannot be initialized upon', 'dual boot - ubuntu 9.10 , 10.04 - /home can not be initialized upon startup', 'is it possible to view pdfs right in chrome without downloading them first ?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Reranking * Datasets: `AskUbuntu-dev` and `AskUbuntu-test` * Evaluated with [RerankingEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.RerankingEvaluator) | Metric | AskUbuntu-dev | AskUbuntu-test | |:--------|:--------------|:---------------| | **map** | **0.5211** | **0.5812** | | mrr@10 | 0.6526 | 0.7053 | | ndcg@10 | 0.5704 | 0.6326 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 160,436 training samples * Columns: noisy and text * Approximate statistics based on the first 1000 samples: | | noisy | text | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | noisy | text | |:-------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------| | how to "your broken "to away? | how to get the `` your battery is broken '' message to go away ? | | can to software for non-root | how can i set the software center to install software for non-root users ? | | what upgrading without using standard upgrade system? | what are some alternatives to upgrading without using the standard upgrade system ? | * Loss: [DenoisingAutoEncoderLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `learning_rate`: 3e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | AskUbuntu-dev_map | AskUbuntu-test_map | |:------:|:-----:|:-------------:|:-----------------:|:------------------:| | -1 | -1 | - | 0.4151 | - | | 0.0499 | 1000 | 5.6837 | - | - | | 0.0997 | 2000 | 3.7699 | - | - | | 0.1496 | 3000 | 3.2169 | - | - | | 0.1995 | 4000 | 2.9133 | - | - | | 0.2493 | 5000 | 2.7208 | 0.5063 | - | | 0.2992 | 6000 | 2.6041 | - | - | | 0.3490 | 7000 | 2.5109 | - | - | | 0.3989 | 8000 | 2.4326 | - | - | | 0.4488 | 9000 | 2.3882 | - | - | | 0.4986 | 10000 | 2.3366 | 0.5148 | - | | 0.5485 | 11000 | 2.3175 | - | - | | 0.5984 | 12000 | 2.2561 | - | - | | 0.6482 | 13000 | 2.2147 | - | - | | 0.6981 | 14000 | 2.174 | - | - | | 0.7479 | 15000 | 2.1728 | 0.5203 | - | | 0.7978 | 16000 | 2.1354 | - | - | | 0.8477 | 17000 | 2.1214 | - | - | | 0.8975 | 18000 | 2.1181 | - | - | | 0.9474 | 19000 | 2.0843 | - | - | | 0.9973 | 20000 | 2.0789 | 0.5211 | - | | -1 | -1 | - | - | 0.5812 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.209 kWh - **Carbon Emitted**: 0.081 kg of CO2 - **Hours Used**: 0.915 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.5.0.dev0 - Transformers: 4.49.0 - PyTorch: 2.6.0+cu124 - Accelerate: 1.4.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### DenoisingAutoEncoderLoss ```bibtex @inproceedings{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", pages = "671--688", url = "https://arxiv.org/abs/2104.06979", } ```