---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:160436
- loss:DenoisingAutoEncoderLoss
base_model: google-bert/bert-base-uncased
widget:
- source_sentence: evolution check, without keeping ui?
sentences:
- why will unity have a global menu os x style ?
- how to increase printers buffer while printing via command line ?
- how do i make evolution check and notify new emails , without keeping main ui
open ?
- source_sentence: has anyone working properly 10.04 on p series?
sentences:
- what is utnubu ?
- has anyone got graphics working properly on 10.04 on a sony vaio p series ?
- how much space will the ubuntu 10.04 netbook take after installation ... ... is
it compatible with the archos 9 ?
- source_sentence: proxy in awesome
sentences:
- setting http proxy in awesome wm
- windows executables are started with archive manager
- how to change `` menu key '' to ctrl
- source_sentence: delay
sentences:
- delay when playing sound
- how should i synchronize configurations and data across computers ?
- how to map a vpn ( tun0 ) network adapter on host ubuntu to a virtualbox guest
windows ?
- source_sentence: dual boot ubuntu, 10.04 - /home cannot be initialized upon
sentences:
- how do i write an application install shell script ?
- is it possible to view pdfs right in chrome without downloading them first ?
- dual boot - ubuntu 9.10 , 10.04 - /home can not be initialized upon startup
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
co2_eq_emissions:
emissions: 81.38533522774361
energy_consumed: 0.209377196998584
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.915
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on google-bert/bert-base-uncased
results:
- task:
type: reranking
name: Reranking
dataset:
name: AskUbuntu dev
type: AskUbuntu-dev
metrics:
- type: map
value: 0.5211319228132101
name: Map
- type: mrr@10
value: 0.6525924472353043
name: Mrr@10
- type: ndcg@10
value: 0.570403051922972
name: Ndcg@10
- task:
type: reranking
name: Reranking
dataset:
name: AskUbuntu test
type: AskUbuntu-test
metrics:
- type: map
value: 0.5812270160114724
name: Map
- type: mrr@10
value: 0.7052651414383257
name: Mrr@10
- type: ndcg@10
value: 0.6326339320821251
name: Ndcg@10
---
# SentenceTransformer based on google-bert/bert-base-uncased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)
- **Maximum Sequence Length:** 75 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/bert-base-uncased-tsdae-askubuntu")
# Run inference
sentences = [
'dual boot ubuntu, 10.04 - /home cannot be initialized upon',
'dual boot - ubuntu 9.10 , 10.04 - /home can not be initialized upon startup',
'is it possible to view pdfs right in chrome without downloading them first ?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Reranking
* Datasets: `AskUbuntu-dev` and `AskUbuntu-test`
* Evaluated with [RerankingEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.RerankingEvaluator)
| Metric | AskUbuntu-dev | AskUbuntu-test |
|:--------|:--------------|:---------------|
| **map** | **0.5211** | **0.5812** |
| mrr@10 | 0.6526 | 0.7053 |
| ndcg@10 | 0.5704 | 0.6326 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 160,436 training samples
* Columns: noisy
and text
* Approximate statistics based on the first 1000 samples:
| | noisy | text |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
how to "your broken "to away?
| how to get the `` your battery is broken '' message to go away ?
|
| can to software for non-root
| how can i set the software center to install software for non-root users ?
|
| what upgrading without using standard upgrade system?
| what are some alternatives to upgrading without using the standard upgrade system ?
|
* Loss: [DenoisingAutoEncoderLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `learning_rate`: 3e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters