Update README.md
Browse files
README.md
CHANGED
@@ -1,547 +1,553 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
-
license: apache-2.0
|
5 |
-
library_name: sentence-transformers
|
6 |
-
tags:
|
7 |
-
- sentence-transformers
|
8 |
-
- sentence-similarity
|
9 |
-
- feature-extraction
|
10 |
-
- 100K<n<1M
|
11 |
-
- loss:MultipleNegativesRankingLoss
|
12 |
-
base_model: microsoft/mpnet-base
|
13 |
-
metrics:
|
14 |
-
- cosine_accuracy
|
15 |
-
- dot_accuracy
|
16 |
-
- manhattan_accuracy
|
17 |
-
- euclidean_accuracy
|
18 |
-
- max_accuracy
|
19 |
-
widget:
|
20 |
-
- source_sentence: The
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
-
|
26 |
-
|
27 |
-
-
|
28 |
-
|
29 |
-
|
30 |
-
-
|
31 |
-
|
32 |
-
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
-
|
38 |
-
-
|
39 |
-
|
40 |
-
|
41 |
-
sentences:
|
42 |
-
- The
|
43 |
-
- The
|
44 |
-
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
- type:
|
73 |
-
value: 0.
|
74 |
-
name:
|
75 |
-
- type:
|
76 |
-
value: 0.
|
77 |
-
name:
|
78 |
-
- type:
|
79 |
-
value: 0.
|
80 |
-
name:
|
81 |
-
|
82 |
-
|
83 |
-
name:
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
- type:
|
95 |
-
value: 0.
|
96 |
-
name:
|
97 |
-
- type:
|
98 |
-
value: 0.
|
99 |
-
name:
|
100 |
-
- type:
|
101 |
-
value: 0.
|
102 |
-
name:
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
- **
|
120 |
-
- **
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
-
|
125 |
-
- **
|
126 |
-
- **
|
127 |
-
|
128 |
-
###
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
-->
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
<!--
|
228 |
-
|
229 |
-
|
230 |
-
*What are
|
231 |
-
-->
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
*
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
252 |
-
| <
|
253 |
-
*
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
*
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
|
278 |
-
| <
|
279 |
-
*
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
-
|
295 |
-
|
296 |
-
- `
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
- `
|
302 |
-
- `
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
- `
|
308 |
-
- `
|
309 |
-
- `
|
310 |
-
- `
|
311 |
-
- `
|
312 |
-
- `
|
313 |
-
- `
|
314 |
-
- `
|
315 |
-
- `
|
316 |
-
- `
|
317 |
-
- `
|
318 |
-
- `
|
319 |
-
- `
|
320 |
-
- `
|
321 |
-
- `
|
322 |
-
- `
|
323 |
-
- `
|
324 |
-
- `
|
325 |
-
- `
|
326 |
-
- `
|
327 |
-
- `
|
328 |
-
- `
|
329 |
-
- `
|
330 |
-
- `
|
331 |
-
- `
|
332 |
-
- `
|
333 |
-
- `
|
334 |
-
- `
|
335 |
-
- `
|
336 |
-
- `
|
337 |
-
- `
|
338 |
-
- `
|
339 |
-
- `
|
340 |
-
- `
|
341 |
-
- `
|
342 |
-
- `
|
343 |
-
- `
|
344 |
-
- `
|
345 |
-
- `
|
346 |
-
- `
|
347 |
-
- `
|
348 |
-
- `
|
349 |
-
- `
|
350 |
-
- `
|
351 |
-
- `
|
352 |
-
- `
|
353 |
-
- `
|
354 |
-
- `
|
355 |
-
- `
|
356 |
-
- `
|
357 |
-
- `
|
358 |
-
- `
|
359 |
-
- `
|
360 |
-
- `
|
361 |
-
- `
|
362 |
-
- `
|
363 |
-
- `
|
364 |
-
- `
|
365 |
-
- `
|
366 |
-
- `
|
367 |
-
- `
|
368 |
-
- `
|
369 |
-
- `
|
370 |
-
- `
|
371 |
-
- `
|
372 |
-
- `
|
373 |
-
- `
|
374 |
-
- `
|
375 |
-
- `
|
376 |
-
- `
|
377 |
-
- `
|
378 |
-
- `
|
379 |
-
- `
|
380 |
-
- `
|
381 |
-
- `
|
382 |
-
- `
|
383 |
-
- `
|
384 |
-
- `
|
385 |
-
- `
|
386 |
-
- `
|
387 |
-
- `
|
388 |
-
- `
|
389 |
-
- `
|
390 |
-
- `
|
391 |
-
- `
|
392 |
-
- `
|
393 |
-
- `
|
394 |
-
- `
|
395 |
-
- `
|
396 |
-
- `
|
397 |
-
- `
|
398 |
-
- `
|
399 |
-
- `
|
400 |
-
- `
|
401 |
-
- `
|
402 |
-
- `
|
403 |
-
- `
|
404 |
-
- `
|
405 |
-
- `
|
406 |
-
- `
|
407 |
-
- `
|
408 |
-
- `
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
|
420 |
-
|
421 |
-
| 0
|
422 |
-
| 0.
|
423 |
-
| 0.
|
424 |
-
| 0.
|
425 |
-
| 0.
|
426 |
-
| 0.
|
427 |
-
| 0.
|
428 |
-
| 0.
|
429 |
-
| 0.
|
430 |
-
| 0.
|
431 |
-
| 0.
|
432 |
-
| 0.
|
433 |
-
| 0.
|
434 |
-
| 0.
|
435 |
-
| 0.
|
436 |
-
| 0.
|
437 |
-
| 0.
|
438 |
-
| 0.
|
439 |
-
| 0.
|
440 |
-
| 0.
|
441 |
-
| 0.
|
442 |
-
| 0.
|
443 |
-
| 0.
|
444 |
-
| 0.
|
445 |
-
| 0.
|
446 |
-
| 0.
|
447 |
-
| 0.
|
448 |
-
| 0.
|
449 |
-
| 0.
|
450 |
-
| 0.
|
451 |
-
| 0.
|
452 |
-
| 0.
|
453 |
-
| 0.
|
454 |
-
| 0.
|
455 |
-
| 0.
|
456 |
-
| 0.
|
457 |
-
| 0.
|
458 |
-
| 0.
|
459 |
-
| 0.
|
460 |
-
| 0.
|
461 |
-
| 0.
|
462 |
-
| 0.
|
463 |
-
| 0.
|
464 |
-
| 0.
|
465 |
-
| 0.
|
466 |
-
| 0.
|
467 |
-
| 0.
|
468 |
-
| 0.
|
469 |
-
| 0.
|
470 |
-
| 0.
|
471 |
-
| 0.
|
472 |
-
| 0.
|
473 |
-
| 0.
|
474 |
-
| 0.
|
475 |
-
| 0.
|
476 |
-
| 0.
|
477 |
-
| 0.
|
478 |
-
|
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
-
|
485 |
-
|
486 |
-
|
487 |
-
###
|
488 |
-
|
489 |
-
- **
|
490 |
-
- **
|
491 |
-
- **
|
492 |
-
|
493 |
-
###
|
494 |
-
-
|
495 |
-
-
|
496 |
-
-
|
497 |
-
-
|
498 |
-
|
499 |
-
|
500 |
-
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
}
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
<!--
|
538 |
-
##
|
539 |
-
|
540 |
-
*
|
541 |
-
-->
|
542 |
-
|
543 |
-
<!--
|
544 |
-
## Model Card
|
545 |
-
|
546 |
-
*
|
|
|
|
|
|
|
|
|
|
|
|
|
547 |
-->
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
library_name: sentence-transformers
|
6 |
+
tags:
|
7 |
+
- sentence-transformers
|
8 |
+
- sentence-similarity
|
9 |
+
- feature-extraction
|
10 |
+
- 100K<n<1M
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
base_model: microsoft/mpnet-base
|
13 |
+
metrics:
|
14 |
+
- cosine_accuracy
|
15 |
+
- dot_accuracy
|
16 |
+
- manhattan_accuracy
|
17 |
+
- euclidean_accuracy
|
18 |
+
- max_accuracy
|
19 |
+
widget:
|
20 |
+
- source_sentence: The strangely dressed guys, one wearing an orange wig, sunglasses
|
21 |
+
with peace signs, and a karate costume with an orannge belt, another wearing a
|
22 |
+
curly blue wig, heart shaped sunglasses, and a karate outfit painted with leaves,
|
23 |
+
and the third wearing pink underwear, a black afro, and giant sunglasses.
|
24 |
+
sentences:
|
25 |
+
- A blonde female is reaching into a golf hole while holding two golf balls.
|
26 |
+
- There are people wearing outfits.
|
27 |
+
- The people are naked.
|
28 |
+
- source_sentence: A group of children playing and having a good time.
|
29 |
+
sentences:
|
30 |
+
- The kids are together.
|
31 |
+
- The children are reading books.
|
32 |
+
- People are pointing at a Middle-aged woman.
|
33 |
+
- source_sentence: Three children dressed in winter clothes are walking through the
|
34 |
+
woods while pushing cargo along.
|
35 |
+
sentences:
|
36 |
+
- A woman is sitting.
|
37 |
+
- Three childre are dressed in summer clothes.
|
38 |
+
- Three children are dressed in winter clothes.
|
39 |
+
- source_sentence: A young child is enjoying the water and rock scenery with their
|
40 |
+
dog.
|
41 |
+
sentences:
|
42 |
+
- The child and dog are enjoying some fresh air.
|
43 |
+
- The teenage boy is taking his cat for a walk beside the water.
|
44 |
+
- A lady in blue has birds around her.
|
45 |
+
- source_sentence: 'Boca da Corrida Encumeada (moderate; 5 hours): views of Curral
|
46 |
+
das Freiras and the valley of Ribeiro do Poco.'
|
47 |
+
sentences:
|
48 |
+
- 'Boca da Corrida Encumeada is a moderate text that takes 5 hours to complete. '
|
49 |
+
- This chapter is in the advance category.
|
50 |
+
- I think it is something that we need.
|
51 |
+
pipeline_tag: sentence-similarity
|
52 |
+
co2_eq_emissions:
|
53 |
+
emissions: 118.81134392463773
|
54 |
+
energy_consumed: 0.30566177669432554
|
55 |
+
source: codecarbon
|
56 |
+
training_type: fine-tuning
|
57 |
+
on_cloud: false
|
58 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
59 |
+
ram_total_size: 31.777088165283203
|
60 |
+
hours_used: 1.661
|
61 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
62 |
+
model-index:
|
63 |
+
- name: MPNet base trained on AllNLI triplets
|
64 |
+
results:
|
65 |
+
- task:
|
66 |
+
type: triplet
|
67 |
+
name: Triplet
|
68 |
+
dataset:
|
69 |
+
name: all nli dev
|
70 |
+
type: all-nli-dev
|
71 |
+
metrics:
|
72 |
+
- type: cosine_accuracy
|
73 |
+
value: 0.9003645200486027
|
74 |
+
name: Cosine Accuracy
|
75 |
+
- type: dot_accuracy
|
76 |
+
value: 0.09705346294046173
|
77 |
+
name: Dot Accuracy
|
78 |
+
- type: manhattan_accuracy
|
79 |
+
value: 0.8968712029161604
|
80 |
+
name: Manhattan Accuracy
|
81 |
+
- type: euclidean_accuracy
|
82 |
+
value: 0.8974787363304981
|
83 |
+
name: Euclidean Accuracy
|
84 |
+
- type: max_accuracy
|
85 |
+
value: 0.9003645200486027
|
86 |
+
name: Max Accuracy
|
87 |
+
- task:
|
88 |
+
type: triplet
|
89 |
+
name: Triplet
|
90 |
+
dataset:
|
91 |
+
name: all nli test
|
92 |
+
type: all-nli-test
|
93 |
+
metrics:
|
94 |
+
- type: cosine_accuracy
|
95 |
+
value: 0.9149644424269935
|
96 |
+
name: Cosine Accuracy
|
97 |
+
- type: dot_accuracy
|
98 |
+
value: 0.08564079285822364
|
99 |
+
name: Dot Accuracy
|
100 |
+
- type: manhattan_accuracy
|
101 |
+
value: 0.911484339536995
|
102 |
+
name: Manhattan Accuracy
|
103 |
+
- type: euclidean_accuracy
|
104 |
+
value: 0.9134513542139506
|
105 |
+
name: Euclidean Accuracy
|
106 |
+
- type: max_accuracy
|
107 |
+
value: 0.9149644424269935
|
108 |
+
name: Max Accuracy
|
109 |
+
---
|
110 |
+
|
111 |
+
# MPNet base trained on AllNLI triplets
|
112 |
+
|
113 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
114 |
+
|
115 |
+
## Model Details
|
116 |
+
|
117 |
+
### Model Description
|
118 |
+
- **Model Type:** Sentence Transformer
|
119 |
+
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
|
120 |
+
- **Maximum Sequence Length:** 512 tokens
|
121 |
+
- **Output Dimensionality:** 768 tokens
|
122 |
+
- **Similarity Function:** Cosine Similarity
|
123 |
+
- **Training Dataset:**
|
124 |
+
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
|
125 |
+
- **Language:** en
|
126 |
+
- **License:** apache-2.0
|
127 |
+
|
128 |
+
### Model Sources
|
129 |
+
|
130 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
131 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
132 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
133 |
+
|
134 |
+
### Full Model Architecture
|
135 |
+
|
136 |
+
```
|
137 |
+
SentenceTransformer(
|
138 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
|
139 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
140 |
+
)
|
141 |
+
```
|
142 |
+
|
143 |
+
## Usage
|
144 |
+
|
145 |
+
### Direct Usage (Sentence Transformers)
|
146 |
+
|
147 |
+
First install the Sentence Transformers library:
|
148 |
+
|
149 |
+
```bash
|
150 |
+
pip install -U sentence-transformers
|
151 |
+
```
|
152 |
+
|
153 |
+
Then you can load this model and run inference.
|
154 |
+
```python
|
155 |
+
from sentence_transformers import SentenceTransformer
|
156 |
+
|
157 |
+
# Download from the 🤗 Hub
|
158 |
+
model = SentenceTransformer("tomaarsen/mpnet-base-all-nli-triplet")
|
159 |
+
# Run inference
|
160 |
+
sentences = [
|
161 |
+
'Then he ran.',
|
162 |
+
'The people are running.',
|
163 |
+
'The man is on his bike.',
|
164 |
+
]
|
165 |
+
embeddings = model.encode(sentences)
|
166 |
+
print(embeddings.shape)
|
167 |
+
# [3, 768]
|
168 |
+
|
169 |
+
# Get the similarity scores for the embeddings
|
170 |
+
similarities = model.similarity(embeddings, embeddings)
|
171 |
+
print(similarities.shape)
|
172 |
+
# [3, 3]
|
173 |
+
```
|
174 |
+
|
175 |
+
<!--
|
176 |
+
### Direct Usage (Transformers)
|
177 |
+
|
178 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
179 |
+
|
180 |
+
</details>
|
181 |
+
-->
|
182 |
+
|
183 |
+
<!--
|
184 |
+
### Downstream Usage (Sentence Transformers)
|
185 |
+
|
186 |
+
You can finetune this model on your own dataset.
|
187 |
+
|
188 |
+
<details><summary>Click to expand</summary>
|
189 |
+
|
190 |
+
</details>
|
191 |
+
-->
|
192 |
+
|
193 |
+
<!--
|
194 |
+
### Out-of-Scope Use
|
195 |
+
|
196 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
197 |
+
-->
|
198 |
+
|
199 |
+
## Evaluation
|
200 |
+
|
201 |
+
### Metrics
|
202 |
+
|
203 |
+
#### Triplet
|
204 |
+
* Dataset: `all-nli-dev`
|
205 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
206 |
+
|
207 |
+
| Metric | Value |
|
208 |
+
|:-------------------|:-----------|
|
209 |
+
| cosine_accuracy | 0.9004 |
|
210 |
+
| dot_accuracy | 0.0971 |
|
211 |
+
| manhattan_accuracy | 0.8969 |
|
212 |
+
| euclidean_accuracy | 0.8975 |
|
213 |
+
| **max_accuracy** | **0.9004** |
|
214 |
+
|
215 |
+
#### Triplet
|
216 |
+
* Dataset: `all-nli-test`
|
217 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
218 |
+
|
219 |
+
| Metric | Value |
|
220 |
+
|:-------------------|:----------|
|
221 |
+
| cosine_accuracy | 0.915 |
|
222 |
+
| dot_accuracy | 0.0856 |
|
223 |
+
| manhattan_accuracy | 0.9115 |
|
224 |
+
| euclidean_accuracy | 0.9135 |
|
225 |
+
| **max_accuracy** | **0.915** |
|
226 |
+
|
227 |
+
<!--
|
228 |
+
## Bias, Risks and Limitations
|
229 |
+
|
230 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
231 |
+
-->
|
232 |
+
|
233 |
+
<!--
|
234 |
+
### Recommendations
|
235 |
+
|
236 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
237 |
+
-->
|
238 |
+
|
239 |
+
## Training Details
|
240 |
+
|
241 |
+
### Training Dataset
|
242 |
+
|
243 |
+
#### sentence-transformers/all-nli
|
244 |
+
|
245 |
+
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
246 |
+
* Size: 100,000 training samples
|
247 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
248 |
+
* Approximate statistics based on the first 1000 samples:
|
249 |
+
| | anchor | positive | negative |
|
250 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
251 |
+
| type | string | string | string |
|
252 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
|
253 |
+
* Samples:
|
254 |
+
| anchor | positive | negative |
|
255 |
+
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
|
256 |
+
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
|
257 |
+
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
|
258 |
+
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
|
259 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
260 |
+
```json
|
261 |
+
{
|
262 |
+
"scale": 20.0,
|
263 |
+
"similarity_fct": "cos_sim"
|
264 |
+
}
|
265 |
+
```
|
266 |
+
|
267 |
+
### Evaluation Dataset
|
268 |
+
|
269 |
+
#### sentence-transformers/all-nli
|
270 |
+
|
271 |
+
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
272 |
+
* Size: 6,584 evaluation samples
|
273 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
274 |
+
* Approximate statistics based on the first 1000 samples:
|
275 |
+
| | anchor | positive | negative |
|
276 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
277 |
+
| type | string | string | string |
|
278 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
|
279 |
+
* Samples:
|
280 |
+
| anchor | positive | negative |
|
281 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
|
282 |
+
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
|
283 |
+
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
|
284 |
+
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
|
285 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
286 |
+
```json
|
287 |
+
{
|
288 |
+
"scale": 20.0,
|
289 |
+
"similarity_fct": "cos_sim"
|
290 |
+
}
|
291 |
+
```
|
292 |
+
|
293 |
+
### Training Hyperparameters
|
294 |
+
#### Non-Default Hyperparameters
|
295 |
+
|
296 |
+
- `eval_strategy`: steps
|
297 |
+
- `per_device_train_batch_size`: 16
|
298 |
+
- `per_device_eval_batch_size`: 16
|
299 |
+
- `num_train_epochs`: 1
|
300 |
+
- `warmup_ratio`: 0.1
|
301 |
+
- `fp16`: True
|
302 |
+
- `batch_sampler`: no_duplicates
|
303 |
+
|
304 |
+
#### All Hyperparameters
|
305 |
+
<details><summary>Click to expand</summary>
|
306 |
+
|
307 |
+
- `overwrite_output_dir`: False
|
308 |
+
- `do_predict`: False
|
309 |
+
- `eval_strategy`: steps
|
310 |
+
- `prediction_loss_only`: True
|
311 |
+
- `per_device_train_batch_size`: 16
|
312 |
+
- `per_device_eval_batch_size`: 16
|
313 |
+
- `per_gpu_train_batch_size`: None
|
314 |
+
- `per_gpu_eval_batch_size`: None
|
315 |
+
- `gradient_accumulation_steps`: 1
|
316 |
+
- `eval_accumulation_steps`: None
|
317 |
+
- `learning_rate`: 5e-05
|
318 |
+
- `weight_decay`: 0.0
|
319 |
+
- `adam_beta1`: 0.9
|
320 |
+
- `adam_beta2`: 0.999
|
321 |
+
- `adam_epsilon`: 1e-08
|
322 |
+
- `max_grad_norm`: 1.0
|
323 |
+
- `num_train_epochs`: 1
|
324 |
+
- `max_steps`: -1
|
325 |
+
- `lr_scheduler_type`: linear
|
326 |
+
- `lr_scheduler_kwargs`: {}
|
327 |
+
- `warmup_ratio`: 0.1
|
328 |
+
- `warmup_steps`: 0
|
329 |
+
- `log_level`: passive
|
330 |
+
- `log_level_replica`: warning
|
331 |
+
- `log_on_each_node`: True
|
332 |
+
- `logging_nan_inf_filter`: True
|
333 |
+
- `save_safetensors`: True
|
334 |
+
- `save_on_each_node`: False
|
335 |
+
- `save_only_model`: False
|
336 |
+
- `restore_callback_states_from_checkpoint`: False
|
337 |
+
- `no_cuda`: False
|
338 |
+
- `use_cpu`: False
|
339 |
+
- `use_mps_device`: False
|
340 |
+
- `seed`: 42
|
341 |
+
- `data_seed`: None
|
342 |
+
- `jit_mode_eval`: False
|
343 |
+
- `use_ipex`: False
|
344 |
+
- `bf16`: False
|
345 |
+
- `fp16`: True
|
346 |
+
- `fp16_opt_level`: O1
|
347 |
+
- `half_precision_backend`: auto
|
348 |
+
- `bf16_full_eval`: False
|
349 |
+
- `fp16_full_eval`: False
|
350 |
+
- `tf32`: None
|
351 |
+
- `local_rank`: 0
|
352 |
+
- `ddp_backend`: None
|
353 |
+
- `tpu_num_cores`: None
|
354 |
+
- `tpu_metrics_debug`: False
|
355 |
+
- `debug`: []
|
356 |
+
- `dataloader_drop_last`: False
|
357 |
+
- `dataloader_num_workers`: 0
|
358 |
+
- `dataloader_prefetch_factor`: None
|
359 |
+
- `past_index`: -1
|
360 |
+
- `disable_tqdm`: False
|
361 |
+
- `remove_unused_columns`: True
|
362 |
+
- `label_names`: None
|
363 |
+
- `load_best_model_at_end`: False
|
364 |
+
- `ignore_data_skip`: False
|
365 |
+
- `fsdp`: []
|
366 |
+
- `fsdp_min_num_params`: 0
|
367 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
368 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
369 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
370 |
+
- `deepspeed`: None
|
371 |
+
- `label_smoothing_factor`: 0.0
|
372 |
+
- `optim`: adamw_torch
|
373 |
+
- `optim_args`: None
|
374 |
+
- `adafactor`: False
|
375 |
+
- `group_by_length`: False
|
376 |
+
- `length_column_name`: length
|
377 |
+
- `ddp_find_unused_parameters`: None
|
378 |
+
- `ddp_bucket_cap_mb`: None
|
379 |
+
- `ddp_broadcast_buffers`: False
|
380 |
+
- `dataloader_pin_memory`: True
|
381 |
+
- `dataloader_persistent_workers`: False
|
382 |
+
- `skip_memory_metrics`: True
|
383 |
+
- `use_legacy_prediction_loop`: False
|
384 |
+
- `push_to_hub`: False
|
385 |
+
- `resume_from_checkpoint`: None
|
386 |
+
- `hub_model_id`: None
|
387 |
+
- `hub_strategy`: every_save
|
388 |
+
- `hub_private_repo`: False
|
389 |
+
- `hub_always_push`: False
|
390 |
+
- `gradient_checkpointing`: False
|
391 |
+
- `gradient_checkpointing_kwargs`: None
|
392 |
+
- `include_inputs_for_metrics`: False
|
393 |
+
- `eval_do_concat_batches`: True
|
394 |
+
- `fp16_backend`: auto
|
395 |
+
- `push_to_hub_model_id`: None
|
396 |
+
- `push_to_hub_organization`: None
|
397 |
+
- `mp_parameters`:
|
398 |
+
- `auto_find_batch_size`: False
|
399 |
+
- `full_determinism`: False
|
400 |
+
- `torchdynamo`: None
|
401 |
+
- `ray_scope`: last
|
402 |
+
- `ddp_timeout`: 1800
|
403 |
+
- `torch_compile`: False
|
404 |
+
- `torch_compile_backend`: None
|
405 |
+
- `torch_compile_mode`: None
|
406 |
+
- `dispatch_batches`: None
|
407 |
+
- `split_batches`: None
|
408 |
+
- `include_tokens_per_second`: False
|
409 |
+
- `include_num_input_tokens_seen`: False
|
410 |
+
- `neftune_noise_alpha`: None
|
411 |
+
- `optim_target_modules`: None
|
412 |
+
- `batch_eval_metrics`: False
|
413 |
+
- `batch_sampler`: no_duplicates
|
414 |
+
- `multi_dataset_batch_sampler`: proportional
|
415 |
+
|
416 |
+
</details>
|
417 |
+
|
418 |
+
### Training Logs
|
419 |
+
| Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
|
420 |
+
|:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:|
|
421 |
+
| 0 | 0 | - | - | 0.6832 | - |
|
422 |
+
| 0.016 | 100 | 2.6355 | 1.0725 | 0.7924 | - |
|
423 |
+
| 0.032 | 200 | 0.9206 | 0.8342 | 0.8080 | - |
|
424 |
+
| 0.048 | 300 | 1.2567 | 0.7855 | 0.8133 | - |
|
425 |
+
| 0.064 | 400 | 0.7949 | 0.8857 | 0.7974 | - |
|
426 |
+
| 0.08 | 500 | 0.7583 | 0.9487 | 0.7872 | - |
|
427 |
+
| 0.096 | 600 | 1.0022 | 1.1312 | 0.7848 | - |
|
428 |
+
| 0.112 | 700 | 0.8178 | 1.2282 | 0.7895 | - |
|
429 |
+
| 0.128 | 800 | 0.9997 | 1.5132 | 0.7488 | - |
|
430 |
+
| 0.144 | 900 | 1.1173 | 1.4605 | 0.7473 | - |
|
431 |
+
| 0.16 | 1000 | 1.0089 | 1.3794 | 0.7543 | - |
|
432 |
+
| 0.176 | 1100 | 1.0235 | 1.4188 | 0.7640 | - |
|
433 |
+
| 0.192 | 1200 | 1.0031 | 1.2465 | 0.7570 | - |
|
434 |
+
| 0.208 | 1300 | 0.8286 | 1.4176 | 0.7426 | - |
|
435 |
+
| 0.224 | 1400 | 0.8411 | 1.1914 | 0.7600 | - |
|
436 |
+
| 0.24 | 1500 | 0.8389 | 1.1719 | 0.7820 | - |
|
437 |
+
| 0.256 | 1600 | 0.7144 | 1.1167 | 0.7691 | - |
|
438 |
+
| 0.272 | 1700 | 0.881 | 1.0747 | 0.7902 | - |
|
439 |
+
| 0.288 | 1800 | 0.8657 | 1.1576 | 0.7966 | - |
|
440 |
+
| 0.304 | 1900 | 0.7323 | 1.0122 | 0.8322 | - |
|
441 |
+
| 0.32 | 2000 | 0.6578 | 1.1248 | 0.8273 | - |
|
442 |
+
| 0.336 | 2100 | 0.6037 | 1.1194 | 0.8269 | - |
|
443 |
+
| 0.352 | 2200 | 0.641 | 1.1410 | 0.8341 | - |
|
444 |
+
| 0.368 | 2300 | 0.7843 | 1.0600 | 0.8328 | - |
|
445 |
+
| 0.384 | 2400 | 0.8222 | 0.9988 | 0.8161 | - |
|
446 |
+
| 0.4 | 2500 | 0.7287 | 1.2026 | 0.8395 | - |
|
447 |
+
| 0.416 | 2600 | 0.6035 | 0.8802 | 0.8273 | - |
|
448 |
+
| 0.432 | 2700 | 0.8275 | 1.1631 | 0.8458 | - |
|
449 |
+
| 0.448 | 2800 | 0.8483 | 0.9218 | 0.8316 | - |
|
450 |
+
| 0.464 | 2900 | 0.8813 | 1.1187 | 0.8147 | - |
|
451 |
+
| 0.48 | 3000 | 0.7408 | 0.9582 | 0.8246 | - |
|
452 |
+
| 0.496 | 3100 | 0.7886 | 0.9364 | 0.8261 | - |
|
453 |
+
| 0.512 | 3200 | 0.6064 | 0.8338 | 0.8302 | - |
|
454 |
+
| 0.528 | 3300 | 0.6415 | 0.7895 | 0.8650 | - |
|
455 |
+
| 0.544 | 3400 | 0.5766 | 0.7525 | 0.8571 | - |
|
456 |
+
| 0.56 | 3500 | 0.6212 | 0.8605 | 0.8572 | - |
|
457 |
+
| 0.576 | 3600 | 0.5773 | 0.7460 | 0.8419 | - |
|
458 |
+
| 0.592 | 3700 | 0.6104 | 0.7480 | 0.8580 | - |
|
459 |
+
| 0.608 | 3800 | 0.5754 | 0.7215 | 0.8657 | - |
|
460 |
+
| 0.624 | 3900 | 0.5525 | 0.7900 | 0.8630 | - |
|
461 |
+
| 0.64 | 4000 | 0.7802 | 0.7443 | 0.8612 | - |
|
462 |
+
| 0.656 | 4100 | 0.9796 | 0.7756 | 0.8748 | - |
|
463 |
+
| 0.672 | 4200 | 0.9355 | 0.6917 | 0.8796 | - |
|
464 |
+
| 0.688 | 4300 | 0.7081 | 0.6442 | 0.8832 | - |
|
465 |
+
| 0.704 | 4400 | 0.6868 | 0.6395 | 0.8891 | - |
|
466 |
+
| 0.72 | 4500 | 0.5964 | 0.5983 | 0.8820 | - |
|
467 |
+
| 0.736 | 4600 | 0.6618 | 0.5754 | 0.8861 | - |
|
468 |
+
| 0.752 | 4700 | 0.6957 | 0.6177 | 0.8803 | - |
|
469 |
+
| 0.768 | 4800 | 0.6375 | 0.5577 | 0.8881 | - |
|
470 |
+
| 0.784 | 4900 | 0.5481 | 0.5496 | 0.8835 | - |
|
471 |
+
| 0.8 | 5000 | 0.6626 | 0.5728 | 0.8949 | - |
|
472 |
+
| 0.816 | 5100 | 0.5192 | 0.5329 | 0.8935 | - |
|
473 |
+
| 0.832 | 5200 | 0.5856 | 0.5188 | 0.8935 | - |
|
474 |
+
| 0.848 | 5300 | 0.5142 | 0.5252 | 0.8920 | - |
|
475 |
+
| 0.864 | 5400 | 0.6404 | 0.5641 | 0.8885 | - |
|
476 |
+
| 0.88 | 5500 | 0.5466 | 0.5209 | 0.8929 | - |
|
477 |
+
| 0.896 | 5600 | 0.575 | 0.5170 | 0.8961 | - |
|
478 |
+
| 0.912 | 5700 | 0.626 | 0.5095 | 0.9001 | - |
|
479 |
+
| 0.928 | 5800 | 0.5631 | 0.4817 | 0.8984 | - |
|
480 |
+
| 0.944 | 5900 | 0.7301 | 0.4996 | 0.8984 | - |
|
481 |
+
| 0.96 | 6000 | 0.7712 | 0.5160 | 0.9014 | - |
|
482 |
+
| 0.976 | 6100 | 0.6203 | 0.5000 | 0.9007 | - |
|
483 |
+
| 0.992 | 6200 | 0.0005 | 0.4996 | 0.9004 | - |
|
484 |
+
| 1.0 | 6250 | - | - | - | 0.9150 |
|
485 |
+
|
486 |
+
|
487 |
+
### Environmental Impact
|
488 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
489 |
+
- **Energy Consumed**: 0.306 kWh
|
490 |
+
- **Carbon Emitted**: 0.119 kg of CO2
|
491 |
+
- **Hours Used**: 1.661 hours
|
492 |
+
|
493 |
+
### Training Hardware
|
494 |
+
- **On Cloud**: No
|
495 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
496 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
497 |
+
- **RAM Size**: 31.78 GB
|
498 |
+
|
499 |
+
### Framework Versions
|
500 |
+
- Python: 3.11.6
|
501 |
+
- Sentence Transformers: 3.0.0.dev0
|
502 |
+
- Transformers: 4.41.1
|
503 |
+
- PyTorch: 2.3.0+cu121
|
504 |
+
- Accelerate: 0.30.1
|
505 |
+
- Datasets: 2.19.1
|
506 |
+
- Tokenizers: 0.19.1
|
507 |
+
|
508 |
+
## Citation
|
509 |
+
|
510 |
+
### BibTeX
|
511 |
+
|
512 |
+
#### Sentence Transformers
|
513 |
+
```bibtex
|
514 |
+
@inproceedings{reimers-2019-sentence-bert,
|
515 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
516 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
517 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
518 |
+
month = "11",
|
519 |
+
year = "2019",
|
520 |
+
publisher = "Association for Computational Linguistics",
|
521 |
+
url = "https://arxiv.org/abs/1908.10084",
|
522 |
+
}
|
523 |
+
```
|
524 |
+
|
525 |
+
#### MultipleNegativesRankingLoss
|
526 |
+
```bibtex
|
527 |
+
@misc{henderson2017efficient,
|
528 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
529 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
530 |
+
year={2017},
|
531 |
+
eprint={1705.00652},
|
532 |
+
archivePrefix={arXiv},
|
533 |
+
primaryClass={cs.CL}
|
534 |
+
}
|
535 |
+
```
|
536 |
+
|
537 |
+
<!--
|
538 |
+
## Glossary
|
539 |
+
|
540 |
+
*Clearly define terms in order to be accessible across audiences.*
|
541 |
+
-->
|
542 |
+
|
543 |
+
<!--
|
544 |
+
## Model Card Authors
|
545 |
+
|
546 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
547 |
+
-->
|
548 |
+
|
549 |
+
<!--
|
550 |
+
## Model Card Contact
|
551 |
+
|
552 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
553 |
-->
|