File size: 27,813 Bytes
c5094d0 94273b1 c5094d0 94273b1 c5094d0 94273b1 c5094d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
---
tags:
- sentence-transformers
- cross-encoder
- text-classification
- generated_from_trainer
- dataset_size:1990000
- loss:MSELoss
base_model: microsoft/MiniLM-L12-H384-uncased
datasets:
- tomaarsen/ms-marco-shuffled
pipeline_tag: text-classification
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
results: []
---
# CrossEncoder based on microsoft/MiniLM-L12-H384-uncased
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the [ms-marco-shuffled](https://huggingface.co/datasets/tomaarsen/ms-marco-shuffled) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
- [ms-marco-shuffled](https://huggingface.co/datasets/tomaarsen/ms-marco-shuffled)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/reranker-modernbert-base-msmarco-mse")
# Get scores for pairs of texts
pairs = [
['what is a electrophoresis apparatus', 'Gel electrophoresis is a method for separation and analysis of macromolecules (DNA, RNA and proteins) and their fragments, based on their size and charge.el electrophoresis of large DNA or RNA is usually done by agarose gel electrophoresis. See the Chain termination method page for an example of a polyacrylamide DNA sequencing gel. Characterization through ligand interaction of nucleic acids or fragments may be performed by mobility shift affinity electrophoresis.'],
['does creatine elevate creatinine levels', "Creatinine is produced from creatine, a molecule of major importance for energy production in muscles. Approximately 2% of the body's creatine is converted to creatinine every day. Creatinine is transported through the bloodstream to the kidneys."],
['how to get rid of caffeine in the body', 'In addition to quickly curing caffeine withdrawal headaches, caffeine may help cure regular headaches and even migraines. Some studies have shown that small doses of caffeine taken in conjunction with pain killers may help the body absorb the medication more quickly and cure the headache in a shorter period of time.'],
['define splanchnopleure', 'delineated, represented, delineate(verb) represented accurately or precisely. define, delineate(verb) show the form or outline of. The tree was clearly defined by the light; The camera could define the smallest object. specify, define, delineate, delimit, delimitate(verb) determine the essential quality of.'],
['how many calories does a glass of wine', 'A large glass of wine contains as many calories as an ice cream. We often drink wine with a meal. But did you know that a large glass of wine (250ml) with 13% ABV can add 228 calories to your dinner? Thatâ\x80\x99s similar to an ice cream or two fish fingers. A standard glass of red or white wine (175ml) with 13% ABV could also contain up to 160 calories, similar to a slice of Madeira cake.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'what is a electrophoresis apparatus',
[
'Gel electrophoresis is a method for separation and analysis of macromolecules (DNA, RNA and proteins) and their fragments, based on their size and charge.el electrophoresis of large DNA or RNA is usually done by agarose gel electrophoresis. See the Chain termination method page for an example of a polyacrylamide DNA sequencing gel. Characterization through ligand interaction of nucleic acids or fragments may be performed by mobility shift affinity electrophoresis.',
"Creatinine is produced from creatine, a molecule of major importance for energy production in muscles. Approximately 2% of the body's creatine is converted to creatinine every day. Creatinine is transported through the bloodstream to the kidneys.",
'In addition to quickly curing caffeine withdrawal headaches, caffeine may help cure regular headaches and even migraines. Some studies have shown that small doses of caffeine taken in conjunction with pain killers may help the body absorb the medication more quickly and cure the headache in a shorter period of time.',
'delineated, represented, delineate(verb) represented accurately or precisely. define, delineate(verb) show the form or outline of. The tree was clearly defined by the light; The camera could define the smallest object. specify, define, delineate, delimit, delimitate(verb) determine the essential quality of.',
'A large glass of wine contains as many calories as an ice cream. We often drink wine with a meal. But did you know that a large glass of wine (250ml) with 13% ABV can add 228 calories to your dinner? Thatâ\x80\x99s similar to an ice cream or two fish fingers. A standard glass of red or white wine (175ml) with 13% ABV could also contain up to 160 calories, similar to a slice of Madeira cake.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Reranking
* Datasets: `NanoMSMARCO`, `NanoNFCorpus` and `NanoNQ`
* Evaluated with [<code>CERerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CERerankingEvaluator)
| Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ |
|:------------|:---------------------|:---------------------|:---------------------|
| map | 0.5979 (+0.1083) | 0.3464 (+0.0760) | 0.6886 (+0.2679) |
| mrr@10 | 0.5893 (+0.1118) | 0.6264 (+0.1266) | 0.6962 (+0.2695) |
| **ndcg@10** | **0.6585 (+0.1181)** | **0.3864 (+0.0613)** | **0.7366 (+0.2359)** |
#### Cross Encoder Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>CENanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CENanoBEIREvaluator)
| Metric | Value |
|:------------|:---------------------|
| map | 0.5443 (+0.1507) |
| mrr@10 | 0.6373 (+0.1693) |
| **ndcg@10** | **0.5938 (+0.1385)** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### ms-marco-shuffled
* Dataset: [ms-marco-shuffled](https://huggingface.co/datasets/tomaarsen/ms-marco-shuffled) at [0e80192](https://huggingface.co/datasets/tomaarsen/ms-marco-shuffled/tree/0e8019214fbbb17845d8fa1e4594882944716633)
* Size: 1,990,000 training samples
* Columns: <code>score</code>, <code>query</code>, and <code>passage</code>
* Approximate statistics based on the first 1000 samples:
| | score | query | passage |
|:--------|:-------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | float | string | string |
| details | <ul><li>min: -11.8</li><li>mean: 0.75</li><li>max: 11.16</li></ul> | <ul><li>min: 9 characters</li><li>mean: 33.33 characters</li><li>max: 123 characters</li></ul> | <ul><li>min: 53 characters</li><li>mean: 348.8 characters</li><li>max: 1016 characters</li></ul> |
* Samples:
| score | query | passage |
|:--------------------------------|:----------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>6.732539335886638</code> | <code>what is shielding in welding</code> | <code>A benefit in using a shielding gas when welding is that there is no slag left on the weld that requires chipping and cleaning like that which is found on an arc weld. When a new wire welding machine is purchased, it does not come with a shielding gas tank. This must be purchased or rented from a gas supplier. Most welding supply stores also sell welding gasses and will be able to assist the buyer in a tank purchase.</code> |
| <code>-5.769245758652687</code> | <code>what degree do you need for physical therapy</code> | <code>E. Medicaid covers occupational therapy, physical therapy and speech therapy services when provided to eligible Medicaid beneficiaries under age 21 in the Child Health Services (EPSDT) Program by qualified occupational, physical or speech therapy providers.</code> |
| <code>9.033631960550943</code> | <code>cascade effect definition</code> | <code>In medicine, cascade effect may also refer to a chain of events initiated by an unnecessary test, an unexpected result, or patient or physician anxiety, which results in ill-advised tests or treatments that may cause harm to patients as the results are pursued.</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#mseloss)
### Evaluation Dataset
#### ms-marco-shuffled
* Dataset: [ms-marco-shuffled](https://huggingface.co/datasets/tomaarsen/ms-marco-shuffled) at [0e80192](https://huggingface.co/datasets/tomaarsen/ms-marco-shuffled/tree/0e8019214fbbb17845d8fa1e4594882944716633)
* Size: 10,000 evaluation samples
* Columns: <code>score</code>, <code>query</code>, and <code>passage</code>
* Approximate statistics based on the first 1000 samples:
| | score | query | passage |
|:--------|:--------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| type | float | string | string |
| details | <ul><li>min: -11.86</li><li>mean: 0.72</li><li>max: 11.07</li></ul> | <ul><li>min: 10 characters</li><li>mean: 33.83 characters</li><li>max: 101 characters</li></ul> | <ul><li>min: 50 characters</li><li>mean: 343.73 characters</li><li>max: 929 characters</li></ul> |
* Samples:
| score | query | passage |
|:---------------------------------|:-----------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>4.691008905569713</code> | <code>what is a electrophoresis apparatus</code> | <code>Gel electrophoresis is a method for separation and analysis of macromolecules (DNA, RNA and proteins) and their fragments, based on their size and charge.el electrophoresis of large DNA or RNA is usually done by agarose gel electrophoresis. See the Chain termination method page for an example of a polyacrylamide DNA sequencing gel. Characterization through ligand interaction of nucleic acids or fragments may be performed by mobility shift affinity electrophoresis.</code> |
| <code>0.7860534191131592</code> | <code>does creatine elevate creatinine levels</code> | <code>Creatinine is produced from creatine, a molecule of major importance for energy production in muscles. Approximately 2% of the body's creatine is converted to creatinine every day. Creatinine is transported through the bloodstream to the kidneys.</code> |
| <code>-1.2669222354888916</code> | <code>how to get rid of caffeine in the body</code> | <code>In addition to quickly curing caffeine withdrawal headaches, caffeine may help cure regular headaches and even migraines. Some studies have shown that small doses of caffeine taken in conjunction with pain killers may help the body absorb the medication more quickly and cure the headache in a shorter period of time.</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#mseloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 8e-06
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 8e-06
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_ndcg@10 | NanoNFCorpus_ndcg@10 | NanoNQ_ndcg@10 | NanoBEIR_mean_ndcg@10 |
|:----------:|:---------:|:-------------:|:---------------:|:--------------------:|:--------------------:|:--------------------:|:---------------------:|
| -1 | -1 | - | - | 0.0219 (-0.5185) | 0.2538 (-0.0712) | 0.0498 (-0.4509) | 0.1085 (-0.3469) |
| 0.0000 | 1 | 64.054 | - | - | - | - | - |
| 0.0322 | 1000 | 55.8586 | - | - | - | - | - |
| 0.0643 | 2000 | 31.6183 | - | - | - | - | - |
| 0.0965 | 3000 | 13.1762 | - | - | - | - | - |
| 0.1286 | 4000 | 6.1773 | - | - | - | - | - |
| 0.1608 | 5000 | 4.2945 | 3.4889 | 0.6180 (+0.0776) | 0.3893 (+0.0643) | 0.7144 (+0.2137) | 0.5739 (+0.1185) |
| 0.1930 | 6000 | 3.6451 | - | - | - | - | - |
| 0.2251 | 7000 | 3.3041 | - | - | - | - | - |
| 0.2573 | 8000 | 2.9813 | - | - | - | - | - |
| 0.2894 | 9000 | 2.8473 | - | - | - | - | - |
| 0.3216 | 10000 | 2.6852 | 2.6960 | 0.6124 (+0.0720) | 0.3992 (+0.0742) | 0.7315 (+0.2309) | 0.5811 (+0.1257) |
| 0.3538 | 11000 | 2.6128 | - | - | - | - | - |
| 0.3859 | 12000 | 2.5252 | - | - | - | - | - |
| 0.4181 | 13000 | 2.461 | - | - | - | - | - |
| 0.4502 | 14000 | 2.3625 | - | - | - | - | - |
| 0.4824 | 15000 | 2.2746 | 2.0279 | 0.6397 (+0.0993) | 0.3963 (+0.0713) | 0.7369 (+0.2363) | 0.5910 (+0.1356) |
| 0.5146 | 16000 | 2.2551 | - | - | - | - | - |
| 0.5467 | 17000 | 2.2193 | - | - | - | - | - |
| 0.5789 | 18000 | 2.2099 | - | - | - | - | - |
| 0.6111 | 19000 | 2.1277 | - | - | - | - | - |
| 0.6432 | 20000 | 2.0969 | 1.9564 | 0.6468 (+0.1063) | 0.3936 (+0.0685) | 0.7391 (+0.2385) | 0.5932 (+0.1378) |
| 0.6754 | 21000 | 2.0624 | - | - | - | - | - |
| 0.7075 | 22000 | 2.0565 | - | - | - | - | - |
| 0.7397 | 23000 | 2.0226 | - | - | - | - | - |
| 0.7719 | 24000 | 1.9583 | - | - | - | - | - |
| 0.8040 | 25000 | 2.0048 | 1.8239 | 0.6575 (+0.1171) | 0.3884 (+0.0634) | 0.7339 (+0.2333) | 0.5933 (+0.1379) |
| 0.8362 | 26000 | 1.9861 | - | - | - | - | - |
| 0.8683 | 27000 | 1.9675 | - | - | - | - | - |
| 0.9005 | 28000 | 1.9531 | - | - | - | - | - |
| 0.9327 | 29000 | 1.9139 | - | - | - | - | - |
| **0.9648** | **30000** | **1.9224** | **1.7848** | **0.6585 (+0.1181)** | **0.3864 (+0.0613)** | **0.7366 (+0.2359)** | **0.5938 (+0.1385)** |
| 0.9970 | 31000 | 1.9059 | - | - | - | - | - |
| -1 | -1 | - | - | 0.6585 (+0.1181) | 0.3864 (+0.0613) | 0.7366 (+0.2359) | 0.5938 (+0.1385) |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0.dev0
- PyTorch: 2.6.0.dev20241112+cu121
- Accelerate: 1.2.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |